THE PLAINS CO₂ REDUCTION (PCOR) PARTNERSHIP – VALIDATING CO₂ STORAGE IN CENTRAL NORTH AMERICA PHASE II ACTIVITIES

Steven A. Smith, Lisa S. Botnen, Anastasia A. Dobroskok, James A. Sorensen, Edward N. Steadman, and John A. Harju Energy & Environmental Research Center, Grand Forks, ND 58202-9018

MMV Operations

- **Project Goal** • To validate the sequestration of CO₂-rich acid gas in a depleted oil reservoir
- Inject a stream of acid gas (70% CO₂–30% H₂S) for simultaneous acid gas disposal, CO₂ sequestration, and enhanced oil recovery (EOR).
- Determine the effects of acid gas injection on target reservoir and cap rock formations.
- Implement a cost-effective approach for measurement, mitigation, and verification (MMV) for sequestration of a CO₂-rich acid gas stream.

Monitor the CO₂/H₂S plume through:

- Perfluorocarbon tracer injection.
- Reservoir pressure monitoring.
- Wellhead and formation fluid sampling (oil, water, gas).

Monitor for early warning of reservoir failure through:

- Pressure measurements of injection well, reservoir, and overlying formations.
- Fluid sampling of overlying formations.

Determine injection well conditions through

- Wellhead pressure gauges.
- Well integrity tests.
- Wellbore annulus pressure measurements.

Oct-06 Jan-07 Apr-07 Aug-07 Nov-07 Feb-08 Jun-08 Sep-08 Dec-08 Injection has been ongoing since December 2006. Cumulative injection total is greater than 20,000 tons to date.

- Completed to determine CO₂ and formation brine displacement characteristics of the pinnacle cap rock (anhydrite).
- Prior to testing:
- Capillary pressure testing to determine pore throat opening size Petrographic analysis
- Two samples were tested using formation brine, CO₂, H₂S, and an acid gas mixture of 70% CO₂ and 30% H₂S.

Results show very low permeability in the cap rock, indicating low potential for natural fluid flow out of the pinnacle.

Carbonate Reservoir About 40 acres at the base (0.16 km²) 400 feet tall (120 m) One production well and one injection well

Acid Gas-Brine Partitioning Results

- Completed to assess the potential for early detection of acid gas in case of leakage into overlying aquifers.
- Performed at 140°F and 1960 psi, the conditions of the Zama F-pool pinnacle reservoir.
- Brine composition 119,000 ppm total dissolved solids (TDS).

Results indicate CO₂ will lead H₂S in the sweep displacement front. May provide warning of a potential future breakthrough of acid gas.

Rock Mechanics Results Lab testing of eight core samples has occurred, primarily dolomite from the Keg River reservoir and dolomite and anhydrite from the Muskeg cap rock. Tests include: Bulk density. Acoustic velocity. Uniaxial strength. Triaxial strength. Residual friction measurements. Results indicate that the cap rock is significantly stiffer than the reservoir rock and is, therefore, a competent seal.

Geology and Hydrogeology Results

- Conducted to better understand the storage characteristics of regional aquifer systems and the fate of acid gas in case of leakage outside the
- Leakage migration, should it occur, would be a very slow process (thousands of years) and would likely be limited to much less than a kilometer from the site because of dissolution, dispersion, and residual gas trapping along the migration pathway.

Results indicate there is minimal potential for acid gas migration to shallower strata and

Zama Path Forward

- Injection of acid gas will continue through Year 4 of Phase II.
- Core samples will be collected from an acid gas disposal zone to examine the mineralogical and geomechanical changes that can occur in a carbonate rock exposed to high-pressure acid gas.
- Geomechanical data will be used to populate a database that will support the creation of a geomechanical model of the pinnacle reef.
- Geochemical modeling activities will be conducted to predict the long-term effects of acid gas injection on the reservoir and cap rock formations.
- A Regional Technology Implementation Plan will be developed.

Core Evaluation Activities

• Lab studies on the recently collected core will examine: - Gas content.

sequestration in lignite coal.

Develop Regional Technology Implementation Plan for CO₂

- Gas specific gravity.
- CH₄ and CO₂ isotherms. Diffusion coefficient.
- Gas desorption time. Coal ash and moisture contents.
- Coal density and compressibility. Rock porosity and permeability.

Test Design Activities

 Analysis of the existing well data served for choosing the location of the test site and supported the creation of a preliminary numeric model of the coal seam using ECLIPSE.

• Five-spot well configuration allows for effective and efficient operation and monitoring of the water production and CO₂ injection program.

CO₂ Sequestration and Enhanced Coalbed Methane in Lignite Coals Project

Field Prod. Rates Production Rates During Simulated Field Pore Pressure During Dewatering and CO,

Input Parameters and Preliminary Results of

Reservoir Temperature T, $^{\circ}$ F.

CO₂ Langmuir Pressure *PLCO*₂,

CH, Langmuir Pressure PLCH,

Coal Gas Concentration C, scf/ton

Diffusion Coefficient D, ft²/day

CO₂ Langmuir Volume VLCO₂, scf/ton....

CH, Langmuir Volume VLCH, scf/ton....

Reservoir Pressure, psi.

Coal Thickness h, ft.

Moisture Content, %.

Desorption Time t, h.

Simulations Using Schlumberger's ECLIPSE Software

Reported Value

.1040–1175

...478.4-540.4

...psi528.-1150..

...1125–1779

...psi518.26

...71.42

..6.0–8.8

..24.1-39.2

...0.02-22.68

..1.29–1.75

...3.76-516.9

 $...0.358-49.2 \times 10^{-1}$

...70.8–73.5

Formation Logging Activities

- Schlumberger Platform Express Log Suite
- Measurements > Porosity
- Resistivity
- Natural radiation (sand/shale) > Bore hole diameter

– Used for:

- Pore pressure prediction Determination of density
- Estimation of rock elastic constants Bulk compressibility estimation
- Additional log suites
- Elemental capture spectroscopy - Multiarm caliper Acoustical

Lignite Path Forward

- Pressure and water quality measurements from monitoring wells.
- May include tiltmeter and microseismic.
- MMV plans will be finalized after analysis of collected field data.
- CO₂ injection to occur in fall 2008.