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ABSTRACT MINERALOGICAL ANALYSIS, EXPERIMENTAL RESULTS, AND MODELING KINETIC RATE
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MISSISSIPPIAN-MADISON GROUP MAJOR MINERAL PHASESHIGH DEFINITION MINERALOGICAL ANALYSIS (QEMSCAN)

HIGH DEFINITION MINERALOGICAL ANALYSIS (QEMSCAN)

HIGH DEFINITION MINERALOGICAL ANALYSIS (QEMSCAN)

Original Sample After exposure to CO2

After exposure to CO2

SOLUTION ANALYSIS

MINOR MINERAL PHASES

 νμ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±= + 1

M

Mn
HMMM K

QaAkrate

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=

15.298
11exp25 TR

Ekk a
M

H+

Where,
k   - the temperature dependant  
    rate constant;
A   - the reactive surface area  
    m  per kg of water; 
a   - the proton activity;
Q   - the ion activity product;
K   - the equilibrium constant;

M   - the mineral index
k  - the rate constant measured  
    at 25  C;
R   - the gas constant;
E  - the activation energy of the  
    reaction;
T   - the absolute gas temperature;
μ & υ  - correcting coefficients.
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Modeling Geochemical Reactions in a Typical Williston Basin Reservoir
Used for CO  and Sour Gas Storage2

This work reports results which were obtained during a series of 
laboratory experiments and numerical modeling of geochemical 
reactions performed by the Plains CO2 Reduction (PCOR) 
Partnership. Core samples collected from various formations of the 
Williston Basin (North Dakota, USA) were exposed for a period of 
four weeks to pure supercritical carbon dioxide and a mixture of 
supercritical carbon dioxide (67.3 mole %) and hydrogen sulfide 
(32.7 mole %) at 2250 psi (155 bar) and 158°F (70°C) in 10 wt. % NaCl 
synthetic brine conditions. Prior to exposure, XRD and XRF 
mineralogical analysis demonstrated the presence of ankerite, 
anhydrite, calcite, crystabolite, dolomite, halite, hematite, kaolinite, 
illite, pyrite, quartz, and others in the Williston Basin samples. After 
exposure, XRD and QEMSCAN analysis of reaction products was also 
performed. Some minerals displayed high reactivity with acid gas, 
including the conversion of dolomite to calcite.  Other samples 
showed high reactivity while exposed to pure CO2; for instance, the 
pyrite was completely dissolved in brine and precipitated as a 
siderite and hematite later in a course of the experiment; the 
hematite was dissolved in brine and partially re-precipitated or 
converted in siderite, and the dolomite partially was converted to 
calcite and magnesium carbonate. The results of the laboratory 
experiments were compared with the numerical modeling which 
was performed with the Geochemist’s Workbench simulator and 
PHREEQC, where the thermodynamic database was adjusted with 
SUPRCRT92 code.

- Mineralogical changes are observed after exposure to supercritical sour gas and 
carbon dioxide;
- The rates of reactions in the laboratory conditions are higher than observed in 
the field (Northwestern McGregor EOR demonstration);
- The mineralogical analysis performed with various analytical tools (XRF, XRD, 
QEMSCAN) require verification with numerical modeling tools;
- Kinetic rates for numerical modeling need correlations with experimental re-
sults and field observations;
- Detailed water analysis is crucial for understanding of rock-water-sour gas inter-
actions, accurate numerical modeling correlation, etc.
- The thermodynamic database correction with SUPRCRT92 code for pressure 
and temperature of interest is required for accurate numerical modeling; 
- The effect of pressure on geochemical reactions is underexplored.

CONCLUSIONS
The results of these initial activities suggest that laboratory experimental results 
can be reasonably correlated to some aspects of geochemical modeling, thereby 
providing a foundation upon which to develop future laboratory and modeling work. 
It is anticipated that planned activities will build upon these results and lead to fur-
ther insight regarding the prediction of interactions between sour gas, rocks, and 
formation fluids at reservoir conditions.

ABOUT PCOR PARTNERSHIP
The Plains CO2 Reduction (PCOR) Partnership is a diverse group of over 80 
public and private sector stakeholders working together to better understand the 
technical and economic feasibility of capturing and storing CO2 emissions from 
stationary sources of CO2 in the central interior of North America. The PCOR Part-
nership is led by the Energy & Environmental Research Center (EERC) at the Uni-
versity of North Dakota and is one of seven regional partnerships designated by 
the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Partner-
ship (RCSP) Program. Funding comes from the RCSP program and a broad range 
of project sponsors.
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CO2 partial pressure: 2250 psi / 155 bar 

Temperature: 158 °F / 70 °C 

Gas Mixture: 

 
1) CO2 – 100 mole % 
2) CO2 – 67.3 mole % 
    H2S – 32.7 mole % 
 

Mass of sample: 10-15 g 

Type of sample: Core plugs 

Saturation conditions: 
 
Synthetic brine  
NaCl, 10% by weight 
 

Time of exposure: 4 weeks 
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MISSISSIPPIAN-FROBISHER-ALIDA INT.

MISSISSIPPIAN-RATCLIFFE INTERVAL

Mineral Formula k25, moles-2s-1 Ea, J/mol*K A, cm2/g Reference 

Anhydrite CaSO4 2.5119x10-8 62.76 9.8 Set to galena from Xu and 
Pruess (2003) 

Ankerite Ca2MgFe(CO3)4 1.2598x10-9 62.76 9.8 Zhang W. et. Al (2007) 

Calcite CaCO3 6.4565x10-6 62.76 9.8 Svensson and Dreybrodt (1992) 

Dolomite CaMg(CO3)2 1.2589x10-6 62.76 9.8 Xu and Pruess (2003) 

Hematite Fe2O3 2.5120x10-15 66.20 12.9 Xu, Apps, and Pruess (2004) 

Magnesite MgCO3 2.5120x10-6 66.20 9.8 Xu, Apps, and Pruess (2004) 

Pyrite FeS2 2.8180x10-6 56.9 12.9 Xu and Pruess (2003) 

Quartz SiO2 1.2589x10-14 87.50 9.8 Xu and Pruess (2003) 

Siderite FeCO3 1.2598x10-9 62.76 9.8 Zhang W. et. Al (2007) 
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