

Potential Sequestration Opportunities in the PCOR Partnership Region

Prepared by: Steven A. Smith, James A. Sorensen, Erin M. O'Leary David W. Fischer, Wesley D. Peck, Edward N. Steadman, and John A. Harju Energy & Environmental Research Center, Grand Forks, North Dakota, USA

University of North Dakota

Estimates of CO₂ Storage Capacity in Oil ields of the PCOR Partnership Region

fers of the PCOR Partnership Region

AER See 141 See 4 The second section in

Funding, guidance, and support for the PCOR Partnership have been provided by

Saline Aquifers

Lower Cretaceous Aquifer System

- . The system has the notential to store over 160 billion tops of CO.

Saline Aquifer Storage Calculation

Saline Aquifer Storage Method

In order to calculate storage potentials for the evaluated saline aquifer systems, a

Decision Support System

Reservoir Data Obtained from:

Storage and Incremental

Recovery Through EOR

Potential CO, from Selected

. Where temperature and pressure were not available, depth was used to estimate their

Volumetric Variables Used

(1-9w) = Saturation of oil, where 9w is the initial reservoir water saturation (%)

 Total annual emissions are over 2000 Bcf /vear. · At standard conditions, this is approximately equivalent to 120 million tons/year

Incremental oil recovered (stb) * 8 Mcf/stb = CO, required (Mcf)

- Montana Board of Oil and Gas Conservation
- Nebraska Oil and Gas Conservation Commission · North Dakota Industrial Commission Oil and Gas Division

⊕ = Average reservoir porosity (%)

- Saskatchewan Industry and Resources Exploration and Geological
- . South Dakota Department of Natural Resources Oil and Gas Section