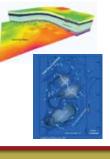
THE PLAINS CO₂ REDUCTION (PCOR) PARTNERSHIP – DEMONSTRATING CO₂ STORAGE IN CENTRAL NORTH AMERICA Steven A. Smith, Lisa S. Botnen, Anastasia A. Dobroskok, James A. Sorensen, Edward N. Steadman, and John A. Harju **Energy & Environmental Research Center, Grand Forks, ND 58202-9018**

To validate the sequestration of CO₂-rich acid gas in a depleted oil reservoir.

- Inject a stream of acid gas (70% CO₂ 30% H₂S) for simultaneous acid gas disposal, CO₂ sequestration, and enhanced oil recovery (EOR)
- Determine the effects of acid gas injection on
- Implement a cost-effective approach for measurement, mitigation, and verification (MMV) for sequestration of a CO₂-rich acid


Results show very low permeability in the caprock, indicating low potential for

- Completed to assess the potential for early detection of acid gas in case of leakage into

Geology and Hydrogeology Results

- Conducted to better understand the storage characteristics of regional aquifer systems and the fate of acid gas in case of leakage outside the
- Leakage migration, should it occur, would be a very slow process (thousands of years) and would likely be limited to much less than a kilometer from the site because of dissolution, dispersion, and residual trapping along the migration pathy

acid-gas migration to shallower strata and potable groundwater.

About 40 acres at the base (0.16 km²) • 400 feet tall (120 m)

- acid gas injection started (positive indication that injection is working
- Cumulative injection is approaching 8000 tons.

CO₂ Sequestration and Enhanced Coalbed Methane in Lignite Coals Project

rmine the feasibility of simultaneous CO. sequestration

F @ 1 == 10 = 10 = 10 E

- 0 - 9 ---- 111 senter 2000.

Carried Village Course State | 100 to 100 to

Martine & Sur PR 💯 🧶 🥙 🕾 📆 🛈 Sura - Salar

4 TOTAL TO COME TO SERVICE STATE STA

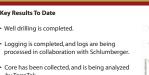
👱 🚅 🚓 🕬 🖦 🐪

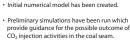
- Inject CO_2 into lignite coal seam and monitor CO_2 fate in the reservoir.

production from the lignite seam.

 Develop Regional Technology Implementation Plan for CO₂ sequestration in lignite coal.

- Analysis of the existing well data served for choosing the location of the test site and supported the creation of a oreliminary numeric model of the coal seam using ECLIPSE.
- monitoring of the water production and CO, injection program.

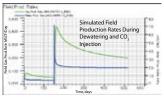



Formation Logging Activities

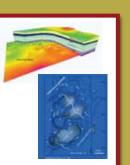
- Schlumberger Platform Express Log Suite
- Porosity Resistivity
- Natural radiation (sand/shale)

- Used for:

- Pore pressure prediction
 Determination of density
 Estimation of rock elastic constants
- > Bulk compressibility estimation
- Elemental capture spectroscopy
 Multiarm caliper
- > Acoustical






Input Parameters and Preliminary Results of

Characteristics	Reported Value
Depth H, ft	1040-1175
Reservoir Temperature T, °F	70.8-73.5
Reservoir Pressure, psi	478.4-540.4
Coal Thickness h, ft	7–9
CO, Langmuir Pressure PLCO,,	psi5281150.2
CO, Langmuir Volume VLCO., scf/ton	1125-1779
CH, Langmuir Pressure PLCH,	psi518.26
CH, Langmuir Volume VLCH, scf/ton	71.42
Ash Content, %	6.0-8.8
Moisture Content, %	24.1-39.2
Coal Gas Concentration C, scf/ton	0.02-22.68
Coal Density	1.29-1.75
Diffusion Coefficient D, ft2/day	0.358-49.2 × 10 ⁻⁷
Desorption Time t, h	3.76-516.9

- Pressure and water quality measurements from monitoring wells
- MMV plans will be finalized after analysis of collected field data.
- CO₂ injection to occur in summer 2008.

Tests include: – Bulk density. Acoustic velocity - Uniaxial strength.

Lab testing of eight core samples has occurred, primarily dolomite from the Keg

River reservoir and dolomite and anhydrite

Results indicate that the caprock is significantly stiffer than the reservoir

- A Regional Technology Implementation Plan will be developed