

PETROPHYSICAL EVALUATION OF BAKKEN FORMATION CORE FROM THE AQUISTORE CO₂ INJECTION SITE

Plains CO₂ Reduction (PCOR) Partnership Phase III Value-Added Report

Prepared for:

Andrea M. Dunn

National Energy Technology Laboratory U.S. Department of Energy 626 Cochrans Mill Road PO Box 10940 Pittsburgh, PA 15236-0940

DOE Cooperative Agreement No. DE-FC26-05NT42592

Prepared by:

Steven A. Smith
Loreal V. Heebink
Christopher J. Beddoe
John P. Hurley
Kurt E. Eylands
Wesley D. Peck
Bethany A. Kurz
Charles D. Gorecki
Edward N. Steadman

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND, 58202-9018

> January 2015 Approved

EERC DISCLAIMER

LEGAL NOTICE This research report was prepared by the Energy & Environmental Research Center (EERC), an agency of the University of North Dakota, as an account of work sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). Because of the research nature of the work performed, neither the EERC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement or recommendation by the EERC.

ACKNOWLEDGMENT

This material is based upon work supported by DOE NETL under Award No. DE-FC26-05NT42592.

DOE DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NDIC DISCLAIMER

This report was prepared by the EERC pursuant to an agreement partially funded by the Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor the North Dakota Industrial Commission (NDIC) nor any person acting on behalf of either:

(A) Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the NDIC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the North Dakota Industrial Commission.

TABLE OF CONTENTS

LIST OF FIGURES	ii
LIST OF TABLES	ii
EXECUTIVE SUMMARY	iii
INTRODUCTION	1
SAMPLE SELECTION AND METHODS OF ANALYSIS	2
Sample Selection	
Methods of Analysis	
Sample Preparation	
Petrographic Analysis	
Bulk Volume, Grain Density, and Porosity	
SEM and XRD Analysis	
CO ₂ –Brine Relative Permeability Determination	
Mercury Injection Capillary Pressure, TOC, and Rock-Eval Tests	
SUMMARY OF KEY OBSERVATIONS	6
Porosity and Mineralogy	7
SEM, XRD, and XRF Mineralogy	
Capillary Pressure	
TOC and Rock-Eval	
Relative Permeability Evaluation	
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	19
REFERENCES	20
APPLIED GEOLOGY LABORATORY DATA SHEETS	Appendix A
CORE LABORATORIES HIGH-PRESSURE MERCURY INJECTION	
SUMMARY REPORT	Appendix B
CORE LABORATORIES TOTAL ORGANIC COMPOUND ROCK-EVAL	,
SUMMARY REPORT	Appendix C

LIST OF FIGURES

1	Location map of PTRC_INJ_5-6-2-8 W2M well
2	Example of slabbed core viewed and described prior to sampling
3	Lithofacie designation of the Bakken Formation in southern Saskatchewan
4	Chart illustrating the relationship between porosity and bulk density of rock samples9
5	Thin-section images from Units A, B, and C, shown from left to right
6	Whole thin-section scan demonstrating textural differences throughout the three Middle Bakken units observed in this well
7	The mineral map (bottom) allows full sorting of mineral phases and mineral associations that are indistinguishable in a conventional BSE image (top)
8	Results of XRD on the upper shale and Middle Bakken interval
9	Pore throat distribution of one upper shale sample (a) and nine Middle Bakken samples (b–d)
10	Results of TOC analysis and Rock-Eval data
11	Graph of relative permeability for simulated formation brine (k _{rw}) and CO ₂ (k _{rg}), Sample 118648, 2102.1 m
12	Graph of relative permeability for simulated formation brine (k _{rw}) and CO ₂ (k _{rg}), Sample 118647, 2100.6 m
	LIST OF TABLES
1	Summary of Sampled Depths and Corresponding Unit Designations
2	Summary of Porosity Results

PETROPHYSICAL EVALUATION OF BAKKEN FORMATION CORE FROM THE AQUISTORE CO₂ INJECTION SITE

EXECUTIVE SUMMARY

One of the goals of the Plains CO₂ Reduction (PCOR) Partnership is to develop a firstorder, reconnaissance-level estimate of the potential carbon dioxide (CO₂) storage resource of a wide variety of geologic formations in the region. To date, research efforts to better understand and estimate CO₂ storage capacity/resource have been largely focused on relatively permeable targets, such as saline formations and conventional oil reservoirs. However, as development of unconventional oil and gas reservoirs throughout North America continues to expand, there is increasing interest from stakeholders regarding the feasibility of CO₂ storage and/or simultaneous CO₂ storage and enhanced oil recovery (EOR) within these types of formations. To determine the role that a tight oil formation, such as the Bakken, may play in carbon capture and storage (CCS), it is critical to understand its petrophysical characteristics that would make it amenable to CO₂ injection. In 2014, the EERC received samples from the upper and middle members of the Bakken Formation that were collected from the Petroleum Technology Research Centre (PTRC) Aquistore Project CO₂ injection well in southern Saskatchewan, Canada. Laboratory activities were conducted, including petrographic analysis, capillary entry pressure determinations, total organic carbon analysis, porosity and permeability analyses, and mineralogical analyses.

In all, ten samples were collected and tested over the course of this evaluation: nine middle member and one upper shale sample. Test results indicate that the Middle Bakken in this area is composed of three unique members, labeled from bottom to top Units A, B, and C. This correlates well with existing published literature. The average porosity and bulk density of nine middle member samples was determined to be 6.75% and 2.54 g/cm³, respectively. The relationship indicates a quartz sandstone-to-limestone-dominated system, which is confirmed through optical thin-section analysis. Mineralogically, the middle member was determined through x-ray diffraction, x-ray fluorescence, and scanning electron microscopy to be dominated by quartz, illite clay, and potassium feldspar. While the samples contain the minerals dolomite and calcite, they are in lower percentages than the rocks of the central Williston Basin. Total organic carbon was found to be less than 1 wt% in each middle member sample tested and about 15 wt% in the upper shale. The evaluation indicated that this area is not likely capable of economically producing oil because the quality of organic carbon was not considered mature.

Regarding the CO_2 storage potential, samples were evaluated to determine their effective porosity, pore throat distribution, and relative permeability to brine and CO_2 . Results of the mercury injection capillary pressure work indicated that the shale and stratigraphically adjacent upper Unit C have a pore throat size distribution of less than 0.25 μ m, typically of rocks considered "geologic seals," or good barriers to fluid flow. The middle unit (B) and lower unit (A), while still small in scale, have a wider size distribution of less than 7.5 μ m that may aid in the injection and movement of fluids away from a wellbore during CO_2 storage.

Relative permeability tests were conducted on two samples from Unit B. Results indicate the potential to move CO₂ through core plugs saturated with 286,000 ppm brine. The relatively high porosity (13.9%), laminated, fine grained sandstone had a permeability to brine of 1.17 mD, an irreducible brine saturation value of 44.1%, and a permeability to CO₂ of 1.17 mD. The sample with tighter-grained fabric (4.7% porosity) had a permeability to brine of 0.007 mD, an irreducible brine saturation of 58.6%, and a permeability to CO₂ of 0.003 mD. It was noted during testing that as the brine was mobilized and "pushed" out of the way, CO₂ flow became more efficient and pressure across the sample decreased. This is not a surprising result considering the large viscosity differences between the two fluids. However, this indicates that the formation may be amenable to use as a secondary CO₂ storage reservoir should the need arise. Further evaluation of this formation is needed regarding injection testing and modeling and simulation of the reservoir prior to making a complete determination. It is anticipated that this may be an area of focus for future evaluations.

PETROPHYSICAL EVALUATION OF BAKKEN FORMATION CORE FROM THE AQUISTORE CO₂ INJECTION SITE

INTRODUCTION

In mid-2012, the Petroleum Technology Research Centre (PTRC) drilled and completed the PTRC_INJ_5-6-2-8 W2M well in southwestern Saskatchewan near Estevan (Figure 1). The well was developed as part of PTRC's Aquistore Project and is to be used for injection of carbon dioxide (CO₂) captured from SaskPower's Boundary Dam Station into the Cambrian Deadwood Formation. During the drilling of the well, a decision was made by PTRC to core the Bakken Formation interval to gain insight regarding its resource potential and/or viability as an alternate CO₂ storage horizon. In March 2014, representatives of the Energy & Environmental Research Center (EERC), through the Plains CO₂ Reduction (PCOR) Partnership, were invited to collect samples from this core in support of both PTRC's and the EERC's CO₂ storage research programs.



Figure 1. Location map of PTRC_INJ_5-6-2-8 W2M well.

One of the goals of the PCOR Partnership is to develop a first-order, reconnaissance-level estimate of the potential CO₂ storage capacity of a wide variety of geologic formations in the region. To date, research efforts to better understand and estimate CO₂ storage capacity in geologic formations have been largely focused on relatively permeable targets, such as saline formations and conventional oil reservoirs. However, as development of unconventional oil and gas reservoirs throughout North America continues to expand, there is increasing interest from stakeholders regarding the feasibility of CO₂ storage and/or simultaneous CO₂ storage and enhanced oil recovery (EOR) within these types of formations. In particular there are questions as to whether tight, organic-rich oil- and gas-producing formations (e.g., "tight oil" formations) can serve as CO₂ sinks or seals. One example is the Bakken Formation (Bakken), a tight (<10-mD), naturally fractured oil and gas reservoir in the Williston Basin. The Bakken Formation contains geology that represents a fractured reservoir or storage system that contains brine and hydrocarbons (Middle Bakken) which is sandwiched between tight, organic-rich, oil-wet black shales (Upper and Lower Bakken) that may be representative of sealing formations in this area.

To determine the role that a tight oil formation, such as the Bakken, may play in carbon capture and storage (CCS), it is critical to understand the petrophysical characteristics of the formation. It is of particular importance to develop an understanding and contribute data sets that can be used to estimate the CO₂ injectivity and long-term storage potential of the reservoir. This study has focused on laboratory activities including petrographic analysis, pore throat size determination, total organic carbon analysis, porosity, and CO₂/brine relative permeability. It is anticipated that results of this work could be used in modeling and simulation efforts to determine storage efficiency that might be expected if CO₂ was injected into the Bakken at the Aquistore site.

SAMPLE SELECTION AND METHODS OF ANALYSIS

Sample Selection

The core from the Aquistore well is housed in Regina, Saskatchewan, and was unboxed for its initial viewing with PTRC, Saskatchewan Geological Survey, and EERC representatives present. At the time of viewing, the core was in the process of being slabbed, which provided an opportunity to observe sedimentary structures and relevant contacts with ease (Figure 2). Upon viewing, the core was divided into three units based on small changes in lithologic character, grain size, grain sorting, mineral content, and observed sedimentary structures. These divisions were previously established and described by Kohlruss and Nickel (2013) of the Saskatchewan Geological Survey (Figure 3). These units also served as the basis for selecting sampling points for the laboratory work in order to provide information on zones of distinct lithologic character.

A total of nine core plugs were sampled from the middle member of the Bakken Formation, and three shale samples were taken from the upper member of the formation. Depth correlation and unit designations are shown in Table 1. Samples were subsequently shipped to the EERC. All core plugs were cut to have a diameter of 30 mm, with various lengths appropriate for the analytical techniques scheduled.

Figure 2. Example of slabbed core viewed and described prior to sampling.

Methods of Analysis

The samples were characterized in detail for petrophysical attributes, including mineralogy, porosity, relative permeability, total organic carbon (TOC), and pore-size distribution. A brief description of each technique is provided under each activity.

Sample Preparation

All samples were photographed for reference and to document their as-received condition. Plug samples were cut into multiple parts in an effort to maximize the characterization opportunity. Plug ends were trimmed and distributed for x-ray diffraction (XRD), x-ray fluorescence (XRF), and thin-section creation. Additional material was allocated to Core Laboratories for mercury injection capillary pressure (MICP) and Rock-Eval/TOC work. Finally, 25.4-mm-long by 30-mm-diameter samples were prepared for flow-through experimentation.

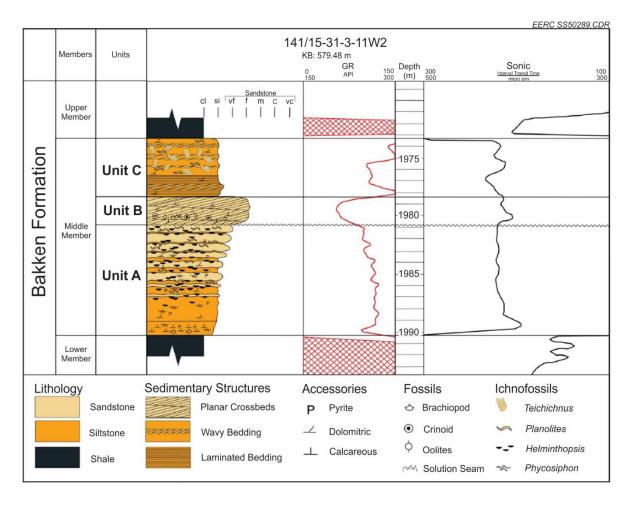


Figure 3. Lithofacie designation of the Bakken Formation in southern Saskatchewan (modified from Kohlruss and Nickel, 2013).

Table 1. Summary of Sampled Depths and Corresponding Unit Designations

Sample Number	Depth, m	Lithofacie
118645	2098.5	Unit C
118646	2100.0	Unit C
118647	2100.6	Unit B
118648	2102.1	Unit B
118649	2103.4	Unit B
118652	2104.7	Unit B
118653	2105.2	Unit A
118654	2108.1	Unit A
118655	2111.4	Unit A
118656	2095.9	Upper shale
118657	2096.1	Upper shale
118658	2097.2	Upper shale

4

Petrographic Analysis

Several petrographic techniques were used to evaluate the mineralogy of the rocks. One end trim was cut (retaining orientation) and sent to Wagner Petrographics for thin-section preparation. Thin sections were ground to a 30-µm thickness and emplaced with blue-dyed epoxy using a vacuum. Alizarin red dye was applied to aid in the distinction between calcite and dolomite.

The EERC used optical microscopy with plane and cross-polarized light to analyze and describe the thin sections. Microscale mineralogical interpretations from the thin sections included rock fabric (grain size and shape distribution, cementation, and/or mineral overgrowth), description of microstructure, and mineral presence. Additional petrographic techniques, including XRD and clay typing as well as scanning electron microscopy (SEM), were performed on one sample from each middle member lithofacies identified in the core and one shale sample.

Bulk Volume, Grain Density, and Porosity

The bulk volume of each sample was determined using a 3-D laser scanner. This technique provides results comparable to those obtained by the conventionally used immersion and Archimedes techniques, but it has the advantage of being noninvasive. The bulk density, skeletal/grain density, and porosity of each core were determined utilizing a commercial-grade helium porosimeter. The technique utilizes Boyle's law equations to determine the grain volume, which is subtracted from the bulk volume to yield the pore volume of the sample. These results were used further in relative permeability test calculations.

SEM and XRD Analysis

Thin sections were analyzed by SEM, and core pieces from the remaining thin-section billets were ground for analysis by XRD and XRF. These analyses were used in conjunction with the thin-section analyses to provide additional information on characteristics such as the bulk mineralogy and textural, elemental, and mineralogical composition of the samples. Specific information obtained includes the identification of the major mineral phases and clay types present (i.e., illite, muscovite, smectite, glauconite, etc.). The results from the techniques were interpreted as a package to provide a concise characterization of the rocks.

- **SEM techniques** SEM techniques were used to evaluate the textural, elemental, and mineralogical composition of the samples using backscattered electron (BSE) imaging and energy-dispersive spectrometry (EDS). EDS was used to create maps showing the mineralogical composition of the samples.
- **XRD** analysis XRD is the standard method for determining bulk mineralogy of materials. The complementary use of SEM data enhances bulk mineral identification. Rietveld refinement was used to quantify the mineralogical composition of the samples.

• **XRF analysis** – XRF is used to determine the bulk chemistry of the samples, reported as elemental oxide weight percent. The results are used as a guide to improve mineral characterization by the XRD technique.

CO₂-Brine Relative Permeability Determination

Relative permeability testing was conducted on two of the selected core samples and included the determination of a drainage curve using CO₂ and brine. The testing utilized the steady-state method where predetermined ratios of CO₂ and brine are set at a known flow rate and pumped through the core plug until a constant pressure drop is achieved. The brine used was a synthetic mixture of salts similar to the chemistry of the actual formation brine and prepared according to data provided by the Saskatchewan Geological Survey to match existing relative permeability tests.

Mercury Injection Capillary Pressure, TOC, and Rock-Eval Tests

Samples were sent to Core Laboratories (Houston, Texas) to perform MICP, TOC, and Rock-Eval tests. In all, nine middle member samples and one upper shale sample were sent to the lab for this testing. The overall goal of this activity was to provide a comparison of pore throat sizes, potential for hydrocarbon production, and kerogen type encountered. The following is a brief description of each test:

- MICP This test determines the pore-size distribution, size classification, and a permeability distribution of samples tested and provides direct inputs for calculated threshold, or breakthrough, pressure testing.
- TOC and Rock-Eval This test is commonly performed to judge a rock formation's potential as a petroleum reservoir. Data associated with TOC testing provide information regarding the weight percent of organic carbon in each sample. Rock-Eval gives an indication of the quality of the organic material encountered and relates it to the overall reservoir potential.

SUMMARY OF KEY OBSERVATIONS

Within the Williston Basin, the Bakken Formation has been explored as a potential hydrocarbon resource for decades. Recent advances in technology coupled with a favorable price environment have allowed field operators to sustain production at economical levels. This has provided a renewed motivation to explore the previously defined boundaries of areas known to be thermally mature, a key criterion for evaluating a hydrocarbon resource. While the well sampled in this report is thought to be outside of the zone of thermal maturity, a program was put in place to determine the petrographic and petrophysical properties of the formation that may indicate whether a hydrocarbon resource exists. However, the investigation goes beyond evaluating the hydrocarbon resource potential because the ultimate purpose of the well is CO₂ injection into the Cambrian-age Deadwood Formation for long-term storage. As such, analytical data are being considered in the context of whether or not the Bakken Formation,

stratigraphically above the Deadwood, in this area could potentially store CO_2 or provide yet another barrier to flow. The following provides a brief summary of key observations made during the evaluation. Sample-specific data from all characterization activities are provided as a series of data sheets in Appendix A.

Porosity and Mineralogy

The porosity and mineralogy of a potential CO₂ storage reservoir are important parameters to understand from the context of long-term injection operations, determinations of plume extent, cap rock integrity, and reporting and regulatory compliance. Because geologic systems are typically heterogeneous with respect to both mineralogical composition and fluid chemistry within available pore space, CO₂-water-rock interactions are complex and thus not easily determined. Modeling and simulation are generally the mechanisms that can provide a visual explanation of the results of potential injection scenarios. While modeling has not been conducted here, the topic of CO₂ injection-related geochemical reactions has been an area of focus in the research community. The addition of CO₂ into a geologic reservoir has the potential to alter the geochemical stability of fluids and minerals within the reservoir matrix. In its most basic form, CO₂ will dissolve into water and form a weak solution of carbonic acid, which will lower the local pH and potentially dissolve acid-soluble materials such as carbonate or metal oxides. To a much lesser effect, injection activities may cause a local temperature and/or pressure flux or localized "drying," which may alter specific aspects of reservoir geochemistry. This has the potential to affect the way CO₂ is distributed within a reservoir and dictate how CO₂ is stored in the long-term.

The mineral constituents of a formation that may lead to specific geochemical interactions are highly reservoir-specific and are difficult to generalize, especially without detailed geochemical modeling. The data generated in this study are being used for correlating lithofacies, evaluating hydrocarbon resource potential, and developing cursory evaluations of the CO₂ storage resource of the formation. While modeling is beyond the scope of this current work, the porosity and mineralogy of samples are provided in an effort to create data sets that may be used for contributed to future geochemical and geologic modeling studies. The results of these analyses are provided in the following discussion.

Table 2 provides a summary of the porosity tests conducted on nine middle member samples. Included are the sample depths and laboratory-derived bulk density, pore volume, and porosity. The average porosity and bulk density for all samples was determined to be 6.75% and 2.54 g/cm³, respectively. When looking at each unit individually, the average porosities are 6.83%, 8.57%, and 2.97% for Units A, B, and C, respectively. These data are not out of the ordinary for the Bakken, a mixture of well-consolidated clastic and carbonate sedimentary rocks. Figure 4 shows a plot illustrating the relationship between wireline log-based neutron porosity and the bulk density of the formation. The samples tested throughout this project plot consistently in the quartz sandstone-to-limestone-dominated systems.

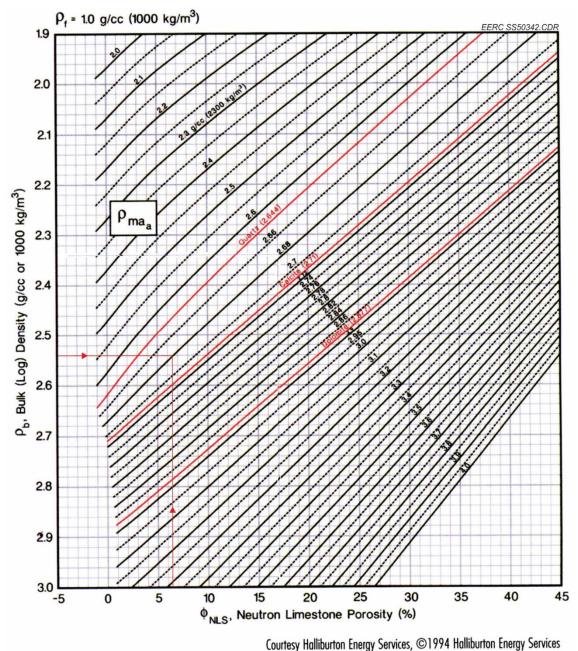

The relationship between porosity and bulk density-based observation of lithology is confirmed through optical thin-section analysis. Figure 5 shows the results of three samples

Table 2. Summary of Porosity Results

						Scanned Bulk	Bulk	Average Pore	Average
Sample Number	Depth, m	Formation	Unit	Length, cm	Diameter, cm	Volume, cm ³	Density, g/cm ³	Volume, cm ³	Porosity, %
118645	2098.5	M. Bakken	C	1.872	3.012	13.34	2.641	0.35	2.63
118646	2100.0	M. Bakken	C	1.723	3.002	12.24	2.643	0.40	3.31
118647	2100.6	M. Bakken	В	1.819	3.007	41.04	2.559	1.41	4.70
118648	2102.1	M. Bakken	В	1.670	3.002	11.80	2.348	1.64	13.90
118649	2103.4	M. Bakken	В	1.728	3.015	12.39	2.536	0.90	7.26
118652	2104.7	M. Bakken	В	1.857	3.007	13.25	2.477	1.12	8.42
118653	2105.2	M. Bakken	A	1.789	3.007	12.64	2.579	0.73	5.74
118654	2108.1	M. Bakken	A	1.776	3.010	12.92	2.483	1.15	8.90
118655	2111.4	M. Bakken	A	1.787	3.010	12.94	2.549	0.76	5.86

representing Units A, B, and C from left to right. Each image shows a quartz-dominated system (white grains) with sporadic calcite grains (red) present. The dark brown material shown in each sample is clay, and the black is pyrite. While grain size changes from stratigraphic bottom to top throughout the Bakken interval are evident, what is noteworthy is a general lack of visible porosity (represented by blue color between grains) in the samples at the base and top of the unit (118654 and 118645, respectively). Each of these samples was tested for porosity, with the results showing values of 2.6% and 5.8%, respectively. Sample 118648 was determined to have a porosity of 13.9%, which is confirmed in the thin section shown in the middle of Figure 5.

Figure 6 shows the same three samples in a larger field of view. In this collection of images, the entire thin section is shown to better illustrate the textural differences of each unit within the Middle Bakken. At the basal Unit A, Sample 118654 shows a relatively structureless siltstone with minor fossil inclusions. The sample is dominated by quartz, feldspars, dolomite/iron–dolomite, and clays with minor calcite as fossil fragments rather than pore filling. Grains are moderately sorted, angular to subangular, and range in size from 10 to 60 μ m. The sample from Unit B, 118648, shows a coarse siltstone to very fine sandstone with coarse laminations. Calcite fill is common, and intergranular porosity is visible. Dolomite and iron–dolomite are common, along with quartz, feldspars, and clays. Grains are poorly rounded and moderately sorted, ranging in size from 10 to 100 μ m, with a majority of grains larger than 60 μ m. Finally, Sample 118645, representing the upper most Unit C, shows a siltstone with a stronger bioturbated texture. Fossil fragments are present within the mixed quartz, feldspars, dolomite, and clay matrix. Intergranular calcite was found likely filling available pore space. Dolomite often shows zoning with iron-rich overgrowths. Quartz grains show some overgrowths as well. The grains are angular and moderately well sorted from 30 to 100 μ m.

Couriesy Halliburion Energy Services, ©1774 Hulliburion Energy Services

Figure 4. Chart illustrating the relationship between porosity and bulk density of rock samples. The average value (red arrow line) of the rocks evaluated for this project plot within the quartz sandstone—limestone windows.

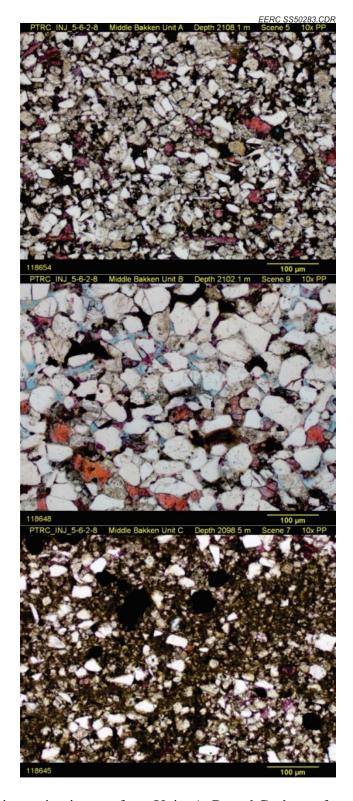


Figure 5. Thin-section images from Units A, B, and C, shown from left to right.

Figure 6. Whole thin-section scan demonstrating textural differences throughout the three Middle Bakken units observed in this well. Units A, B, and C are shown from left to right.

SEM, XRD, and XRF Mineralogy

SEM, XRD, and XRF were used in conjunction with one another to determine the bulk mineralogical content of four samples, three from the middle member and one from the upper shale. Two methods of SEM were employed on thin-section samples, BSE imaging and EDS. BSE imaging provides a scan of the sample surface in an effort to understand the chemistry of each point analyzed. The second technique, EDS, uses software to aid in the interpretation of the chemistry and assign the most likely mineral type. EDS was used to create maps showing the mineralogical distribution and composition of the samples.

Figure 7 provides two images of the same areal extent of Sample 118648 (Unit B). While the image on the top has data regarding the chemistry of multiple points within the sample, there is still much left to the imagination regarding the mineralogy of the sample, grain-to-grain relationships, cements, etc. The lower image begins to bring clarity to the complex heterogeneity found at a relatively small scale. For instance, the sample is dominated by quartz and feldspar grains. Where feldspars exist, it becomes clear that the perimeter of these particles has begun breaking down to form new clay particles, in this case illite. Likewise, the calcite shows evidence of dolomitization. The quartz remains unaltered because of its chemical resistivity. Another added benefit of this type of analysis is the ease at which one can quantify the mineral species in each sample in 2-D area percent. Specifically, this scan was determined to contain 49.4% quartz, 12.3% illite, 12.1% potassium–feldspar, 10.6% organic-filled pores, 7.1% dolomite, 5.1% calcite, and a minor amount of albite.

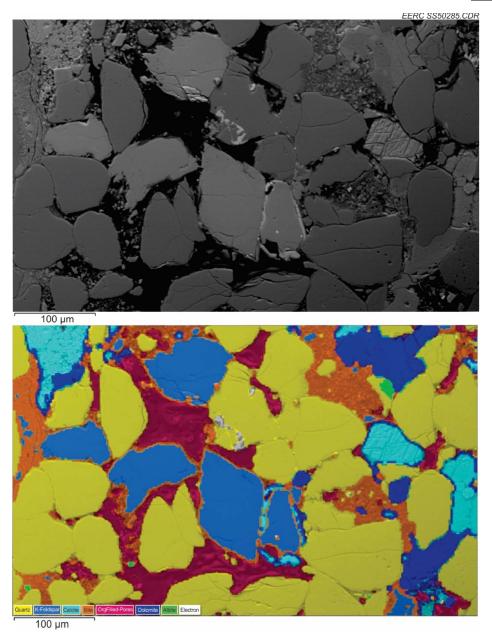


Figure 7. The mineral map (bottom) allows full sorting of mineral phases and mineral associations that are indistinguishable in a conventional BSE image (top). The colors on the image are altered from the legend because of the overlay on the BSE image.

To further understand the mineralogy of these samples, XRD and XRF analyses were conducted. Three middle member samples and one upper shale sample were selected based on their representative character in each lithofacie. The three middle member samples represent each unit throughout the interval. Figure 8 shows the distribution of mineralogy for each sample tested. The upper shale sample is composed primarily of quartz and illite clay with relative weight percent values of 36.4% and 31.5%, respectively. Potassium–feldspar was the next largest component at 19.5% and minor amounts of accessory minerals. The three middle member samples are generally similar in composition, with quartz dominating each zone. The remaining minerals in each sample are distributed between ankerite, dolomite, illite, calcite, feldspars, and anhydrite. Additional accessory minerals and relative weight percents obtained are detailed for each sample in Appendix A of this report.

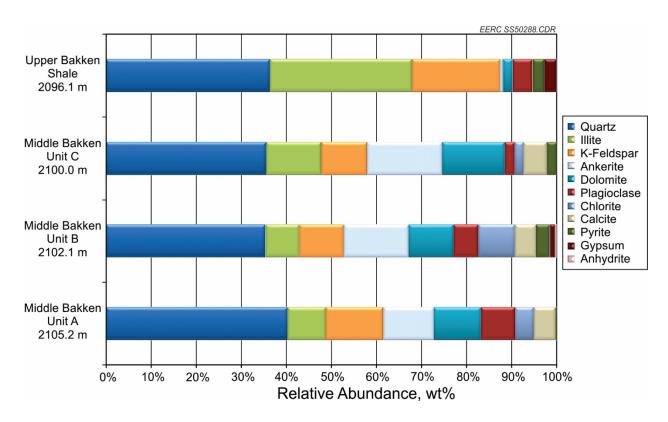


Figure 8. Results of XRD on the upper shale and Middle Bakken interval. It can be seen that the mineralogy of the middle member is very similar throughout, with unit boundaries identified primarily through textural changes.

Capillary Pressure

High-pressure mercury injection (HPMI) tests were performed on nine middle member samples and one upper shale sample. The goal of the test was to compare and contrast the pore throat sizes observed over the three units and, ultimately, compare them to the upper shale. These data help inform the flow-through experimentation and provide insight regarding the sink-versus-seal quality of this reservoir. This has specific implications to CO₂ injection and storage evaluation purposes in that the test provides a level of understanding for potential injectivity and the size of the available pores within the rock package being considered. Capillary entry pressures can be estimated using the pore throat radius obtained in this test. Along with the interfacial tension and wetting angle of CO₂ in the presence of brine, an estimate of the pressure needed to overcome and displace the in-place wetting phase (brine) can be made. At time of reporting, evaluation of capillary entry pressure and its relationship to CO₂ storage estimation is ongoing and will be published in subsequent documents. A brief summary of HPMI testing results follows. All sample data are provided in a summary report in Appendix B of this document.

Figure 9 shows the distribution of pore throat sizes encountered for all samples tested. The pore throats of each of the samples tested are similar to rocks considered geologic barriers to flow. In certain cases, like Sample 118645, Middle Bakken Unit C, 2098.5 m, the pore throats fall within the range of a geologic seal, between 10 and 100 nm. The samples tested for Unit B have the largest pore throats and are generally bimodal in their distribution. The evaluation of this reservoir for CO₂ storage will be dictated by how well-connected these pores are and whether the calculated entry pressures fall below acceptable fracture gradients.

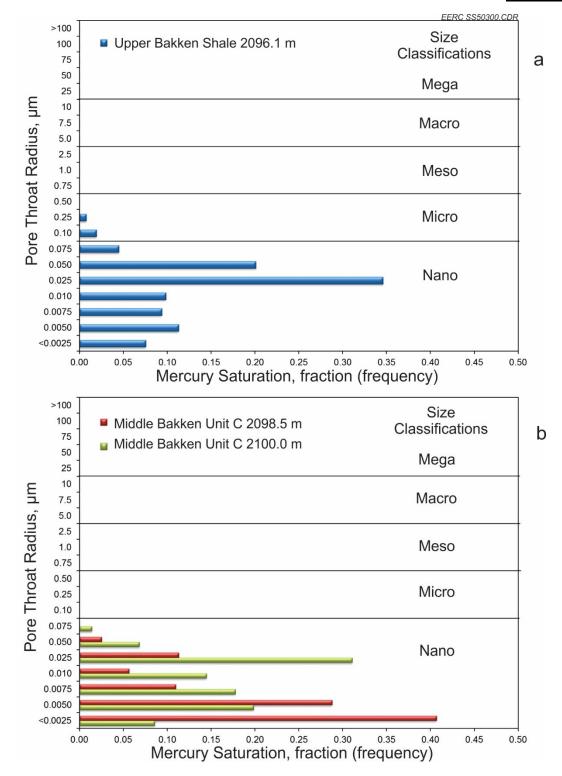


Figure 9. Pore throat distribution of one upper shale sample (a) and nine Middle Bakken samples (b–d) (continued).

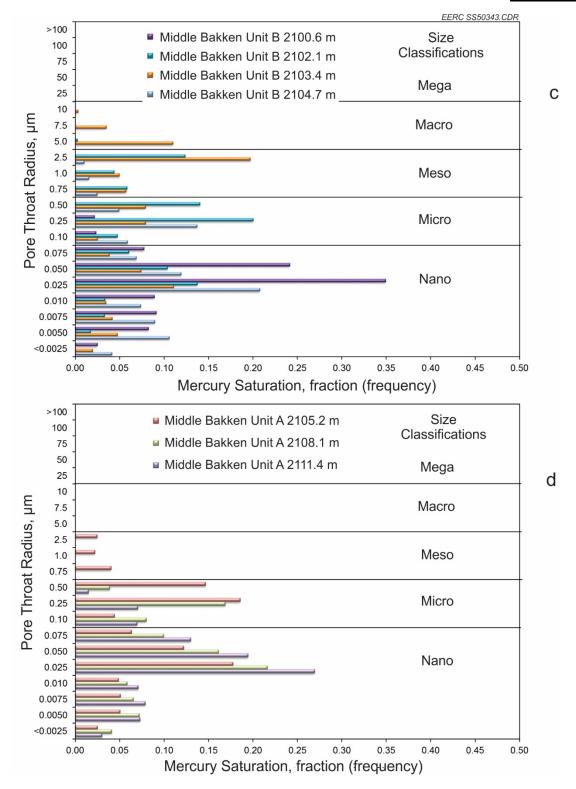


Figure 9 (continued). Pore throat distribution of one upper shale sample (a) and nine Middle Bakken samples (b–d) (continued).

TOC and Rock-Eval

In an effort to determine the petroleum potential of this reservoir, TOC and Rock-Eval tests were conducted on nine middle member samples and one upper shale sample. TOC analysis provides the organic carbon present in samples as an indicator of a hydrocarbon resource potentially present. Rock-Eval indicates the overall quality of carbon, from an oil-generating perspective, if it is present. Figure 10 provides the data plotted as free hydrocarbon content (mg HC/g rock) versus TOC (wt%). It is evident that there is very little organic carbon present in the middle member samples (all nine clustered around zero), while the upper shale contains just over 15%. While much higher than the middle member, the upper shale is still in the lower portion of the free hydrocarbon range and, thus, is shown to have little or no potential for oil production. All sample data are provided in a summary report in Appendix C of this document.

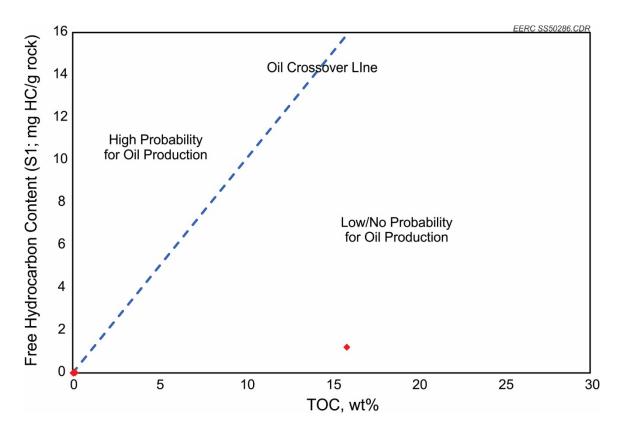


Figure 10. Results of TOC analysis and Rock-Eval data. This figure illustrates the low overall organic content found in these samples. It further illustrates that the organic content found has little potential for oil production.

Relative Permeability Evaluation

Relative permeability is a specialized flow experiment that calculates the relative rate at which supercritical CO₂ flows through brine-saturated rock. The test identifies the reservoir condition permeability of each fluid and provides an indication of the irreducible water saturation present in the sample tested. The steady-state relative permeability testing conducted at the EERC used a representative formation brine with a total dissolved solids content of 286,000 parts per million and pure CO₂. Test results for Sample 118648 (porosity 13.9%, pore volume 1.64 cm³) show a permeability to brine of 1.17 mD and an irreducible brine saturation value of 44.1% (Figure 11). The permeability to CO₂ was 0.421 mD for this sample. This is a reasonable flow condition for this relatively high porosity, laminated, fine grained sandstone. The second sample tested was from the same interval (Unit B) but observed to be composed of a tighter-grained fabric manifested in a reduced porosity of 4.7% and a pore volume of 1.41 cm³. The test data show a relatively high irreducible water saturation of 58.6% and brine permeability of 0.007 mD. Permeability to CO₂ was determined to be 0.003 mD at the irreducible brine condition (Figure 12).

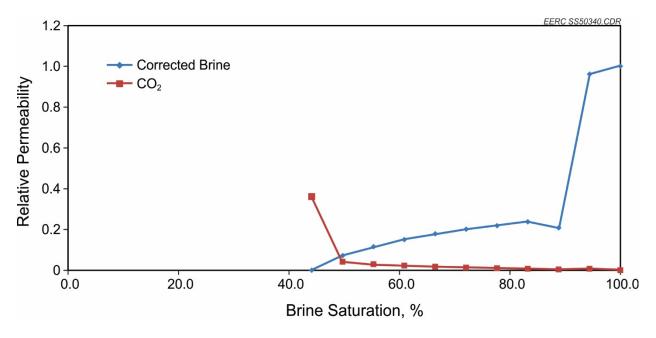


Figure 11. Graph of relative permeability for simulated formation brine (k_{rw}) and CO₂ (k_{rg}), Sample 118648, 2102.1 m.

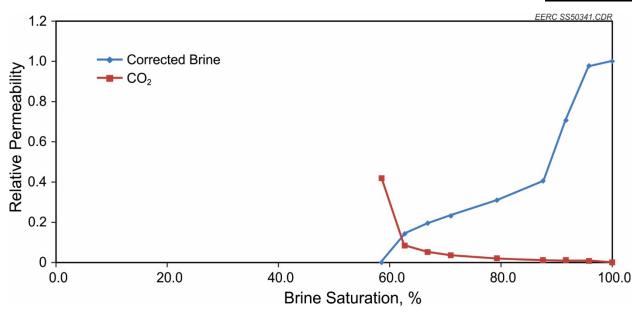


Figure 12. Graph of relative permeability for simulated formation brine (k_{rw}) and CO_2 (k_{rg}) , Sample 118647, 2100.6 m.

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

In all, ten samples were collected and tested over the course of this evaluation: nine middle member and one upper shale sample. Test results indicate that the Middle Bakken in this area is composed of three unique members, labeled from bottom to top Units A, B, and C. This correlates well with existing published literature. The average porosity and bulk density of nine middle member samples was determined to be 6.75% and 2.54 g/cm³, respectively. The relationship indicates a quartz sandstone-to-limestone-dominated system, which is confirmed through optical thin-section analyses. Mineralogically, the middle member was determined through XRD, XRF, and SEM to be dominated by quartz, illite clay, and potassium feldspar. While the samples contain the minerals dolomite and calcite, they are in lower percentages than the rocks of the central Williston Basin. Total organic carbon was found to be less than 1 wt% in each middle member sample tested and about 15 wt% in the upper shale. The evaluation indicated that this area is not likely capable of economically producing hydrocarbon because the quality of organic carbon was not considered mature.

Regarding the CO₂ storage potential, samples were evaluated to determine their pore throat distribution, effective porosity, and relative permeability to brine and CO₂. Results of the mercury injection capillary pressure work indicated that the shale and stratigraphically adjacent upper Unit C have a pore throat size distribution generally found in rocks considered "geologic seals," or good barriers to fluid flow. The middle unit (B) and lower unit (A), while still small in scale, have a wider size distribution which may aid in the injection and movement of fluids away from a wellbore.

Relative permeability tests were conducted on two samples from Unit B. Results indicate the potential to move CO₂ through core plugs saturated with 286,000 ppm brine. The relatively

high porosity (13.9%), laminated, fine-grained sandstone had a permeability to brine of 1.17 mD, an irreducible brine saturation value of 44.1%, and a permeability to CO₂ of 1.17 mD. The sample with a tighter-grained fabric (4.7% porosity) had a permeability to brine of 0.007 mD, an irreducible brine saturation of 58.6%, and a permeability to CO₂ of 0.003 mD. It was noted during testing that as the brine was mobilized and "pushed" out of the way, CO₂ flow became more efficient and pressure across the sample decreased. This is not a surprising result considering the large viscosity differences between the two fluids. However, this indicates that the formation may be amenable to use as a secondary CO₂ storage reservoir should the need arise. Further evaluation regarding injection testing, static and dynamic modeling and simulation of the reservoir, and geochemical modeling are needed prior to making a complete determination. It is anticipated that this may be an area of focus for future evaluations.

The following are recommendations for future work:

- Geomechanical evaluations to determine strength parameters of each lithofacies and cap rock.
- Additional relative permeability work to better understand the CO₂ storage potential of this reservoir.
- Collection of additional core to determine the heterogeneity of this reservoir laterally adjacent to the injection zone.
- Further mineralogical and flow-through testing to determine similarities and differences.
- Local-scale modeling and simulation of the Bakken reservoir interval to determine injectivity of CO₂.
- Geochemical modeling to determine the potential reactivity of the potential injection zone and cap rock.

REFERENCES

Gunter, W.D., Bachu, S., and Benson, S.M., 2004, The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage for carbon dioxide, In Baines, S.J., and Worden, R.H. eds., Geological storage of carbon dioxide: London, United Kingdom, Geological Society, Special Publication 233, p. 129–145.

Kohlruss, D., and Nickel, E., 2013, Bakken Formation of southeastern Saskatchewan—selected stratigraphy and production maps: Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey Open File 2013-1.

APPENDIX A

APPLIED GEOLOGY LABORATORY DATA SHEETS

Applied Geology Laboratory		ID: 118657/658
	U	pper Bakken Shale
Well Name: PTRC INL 5-6-2-8 W2M		Denth: 2096 1 m

SAMPLE PHOTOGRAPH

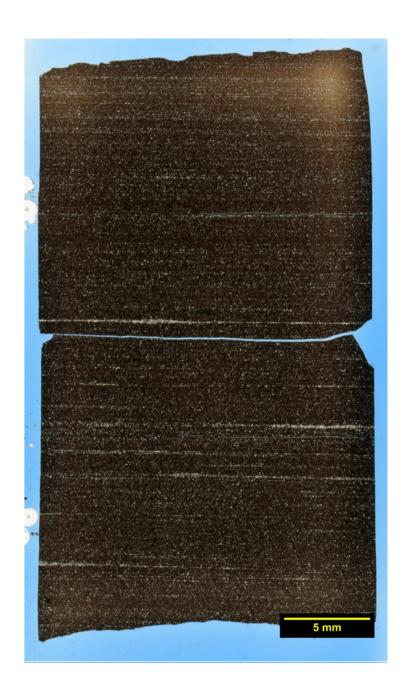
PHYSICAL PROPERTIES

'or		

Pycnometer Effective Porosity Average, vol%
Pending

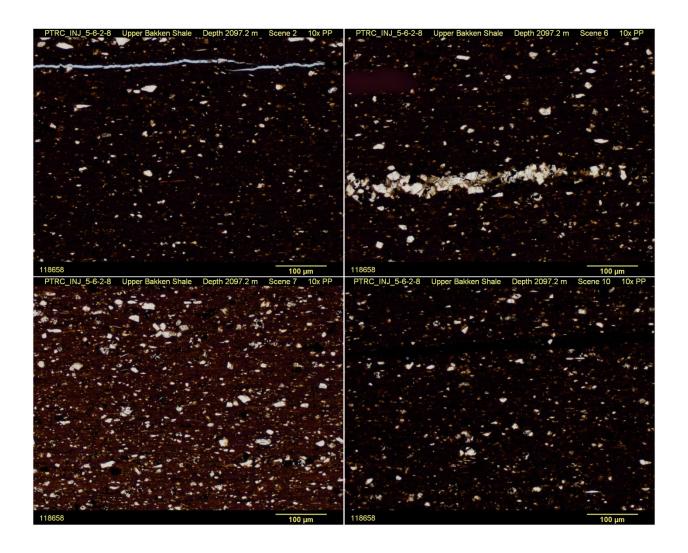
Volume and Density

Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
Pending	Pending	Pending	Pending


Permeability

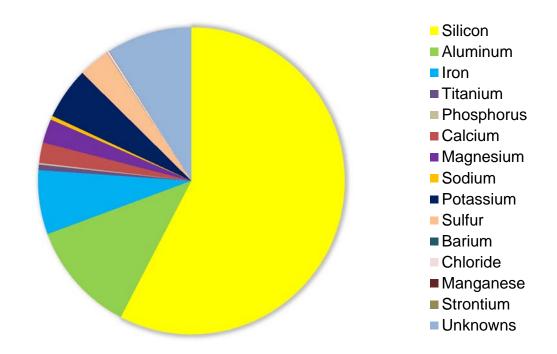
et meability	
Gas Permeability, m	
Pending	

Applied Geology Laboratory	ID: 118657/658
	Jpper Bakken Shale
Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2096.1 m


FULL THIN-SECTION SLIDE

Applied Geology Laboratory	ID: 118657/658
U	pper Bakken Shale
Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2096.1 m

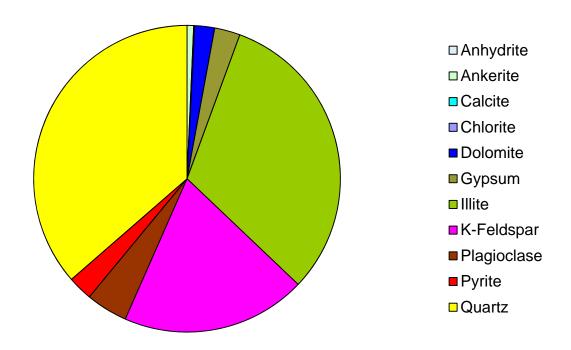
PLANE POLAR PHOTOMICROGRAPHS



The 2097.2-m Upper Bakken Shale thin section shows dark, silty shale. Very fine laminations of silt grains are found in the very dark shale consisting of mostly quartz and some dolomite.

Applied Geology Laboratory		ID: 118657/658
	U	pper Bakken Shale
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2096.1 m

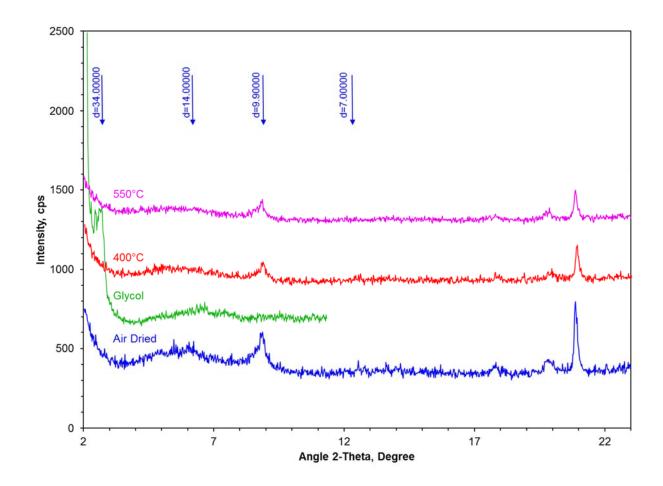
X-RAY FLUORESCENCE (XRF) BULK CHEMICAL COMPOSITION


Element	Reporting Convention (oxide)	wt%
Si (silicon)	SiO_2	57.62
Al (aluminum)	Al_2O_3	11.75
Fe (iron)	Fe_2O_3	6.75
Ti (titanium)	TiO_2	0.58
P (phosphorus)	P_2O_5	0.18
Ca (calcium)	CaO	2.15
Mg (magnesium)	MgO	2.51
Na (sodium)	Na ₂ O	0.41
K (potassium)	K_2O	5.46
S (sulfur)	SO_3	3.31
Ba (barium)	BaO	0.03
Cl (chloride)	Cl	0.23
Mn (manganese)	MnO	0.02
Sr (strontium)	SrO	0.01
Unknowns	Due to the presence of carbonates*	9.00
Total		100.01

^{*} Sample effervesced in the presence of dilute HCl, verifying the presence of carbonates.

Applied Geology Laboratory	ID: 118657/658
	Upper Bakken Shale
Well Name: PTRC INJ 5-6-2-8 W2M	Depth: 2096.1 m

X-RAY DIFFRACTION (XRD) MINERAL-PHASE DISTRIBUTION



Mineral Phase	Formula	Relative wt%
Quartz	SiO_2	36.4
Pyrite	FeS_2	2.6
K-Feldspar	KAlSi ₃ O ₈	19.5
Plagioclase	Na _{0.5} Ca _{0.5} Al _{1.5} Si _{2.5} O ₈	4.4
Calcite		0.1
Dolomite	CaMg(CO ₃) ₂	2.1
Ankerite	CaMg _{0.45} Fe _{0.55} (CO ₃) ₂	0.7
Illite	$(K,H_3O)(Al,Mg,Fe)_2(Si,Al)_4O_{10}[(OH)_2,(H_2O)]$	31.5
Chlorite	$(Mg,Fe)_3(Si,Al)_4O_{10}$ - $(OH)_2 \cdot (Mg,Fe)_3(OH)_6$	0.0
Gypsum	CaSO ₄ • 2(H ₂ O)	2.7
Anhydrite	CaSO ₄	0.0
Total		100.0
Total Carbonates		2.9
Total Clay		31.5

Applied Geology Laboratory	ID: 118657/658
	pper Bakken Shale
Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2096.1 m

XRD CLAY TYPING

Clays Identified

High Amount of Smectite Some Illite/Smectite

Applied Geology Laboratory ID: 118657/658 Upper Bakken Shale

Well Name: PTRC_INJ_5-6-2-8 W2M

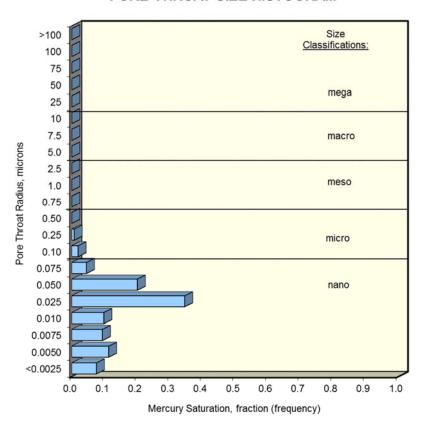
Depth: 2096.1 m

CORE LABORATORIES, INC., HIGH-PRESSURE MERCURY INJECTION (HPMI) SUMMARY DATA

See Appendix B for full Core Labs report.

Core Labs Sample ID S11 #118657m Depth 2096.10 m

Mercury Injection Data Summary


$\begin{array}{c} \textbf{Maximum S}_b/P_c*,\\ \textbf{fraction} \end{array}$	Pore Throat Radius at 35% Mercury Saturation (R35), μm	Median Pore Throat Radius, µm	
0.00036	0.0199	0.0135	

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

	Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
•	9.724	0.212	3.610	3.823	2.694	2.543

PORE THROAT SIZE HISTOGRAM

Applied Geology Laboratory

ID: 118657/658

Upper Bakken Shale

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2096.1 m

CORE LABORATORIES, INC., TOTAL ORGANIC CARBON (TOC) AND ROCK EVALUATION (ROCK-EVAL) SUMMARY DATA

See Appendix C for full Core Labs Report.

Core Labs Sample ID S11-118657 Depth 2096.1 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} *, °C	
20.8	15.89	436	

^{*} Pyrolysis oven temperature during maximum generation of hydrocarbons.

ID: 118645

Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2098.5 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

Porosity

orosity	
Pycnometer Effective Porosity Average, vol%	
2.63	

Volume and Density

Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
13.34	2.641	12.989	2.712

Permeability

1 cimeability		
	Gas Permeability, mD	
	Pending	

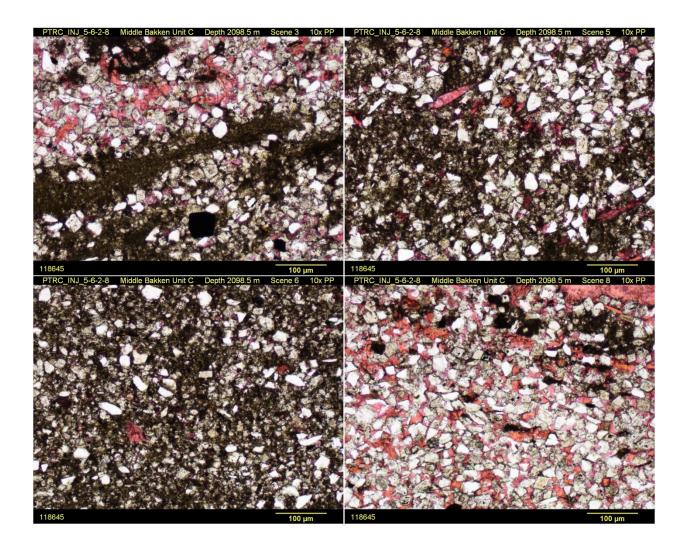
ID: 118645

Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2098.5 m

FULL THIN-SECTION SLIDE


ID: 118645

Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2098.5 m

PLANE POLAR PHOTOMICROGRAPHS

The 2098.5-m Middle Bakken sample is siltstone containing quartz, feldspars, dolomite, and clays, with intergranular calcite. Dolomite often shows zoning with iron-rich overgrowths. Quartz grains show some overgrowths as well. Some zones show no calcite. It is very fine sand to coarse silt in size, angular, and moderately well sorted (30 to $100 \, \mu m$).

ID: 118645

Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

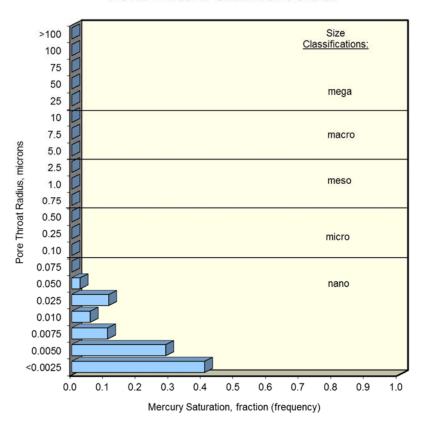
Depth: 2098.5 m

CORE LABORATORIES, INC., HPMI SUMMARY DATA

See Appendix B for full Core Labs report.Core Labs Sample ID S1 #118645-2m

Depth 2098.50 m

Mercury Injection Data Summary


Maximum S _b /P _c *,	Pore Throat Radius at 35%	Median Pore Throat
fraction	Mercury Saturation (R35), µm	Radius, µm
0.00005	0.00432	

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
10.947	0.176	5.015	5.194	2.183	2.108

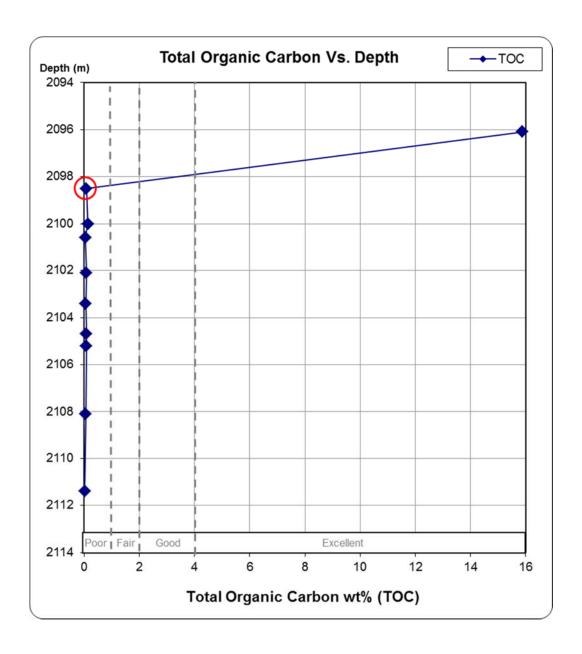
PORE THROAT SIZE HISTOGRAM

ID: 118645

Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2098.5 m


CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S1-118645-2 Depth 2098.5 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.7	0.08	423

Applied Geology Laboratory		ID: 118645
	Midd	lle Bakken Unit C
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2098.5 m

This page intentionally left blank.

Applied Geology Laboratory Middle Bakken Unit C

ID: 118646

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2100.0 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

\mathbf{r}		•	4
$\boldsymbol{\nu}$	Λr	OSI	TT
	VI.	U.D.I	LV

·	Pycnometer Effective Porosity Average, vol%
	3.31

Volume and Density

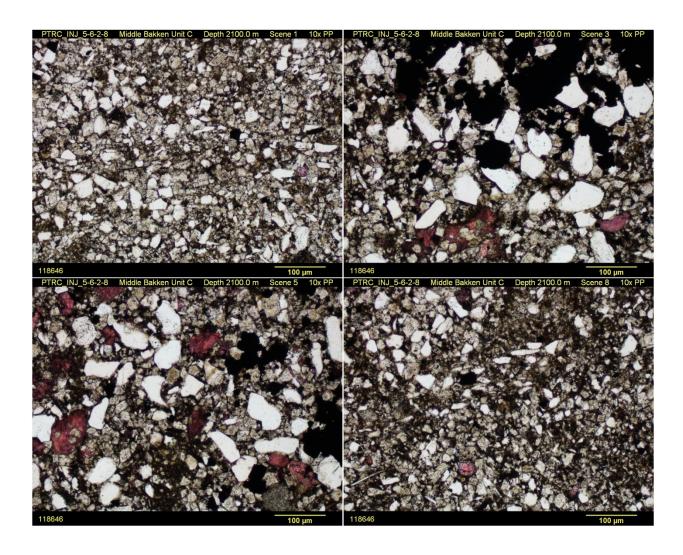
Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm³
12.24	2.643	11.835	2.733

Permeability

Gas Permeability, mD
Pending

Applied Geology Laboratory		ID: 118646
	Mid	dle Bakken Unit C
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2100.0 m

FULL THIN-SECTION SLIDE

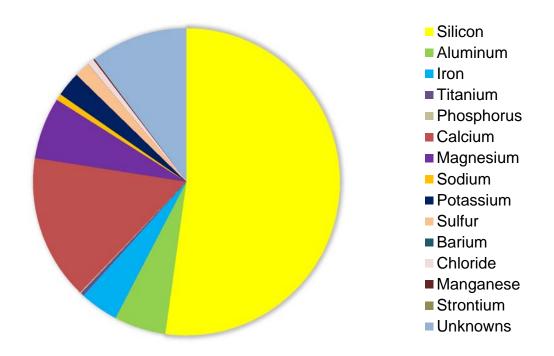

ID: 118646

Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2100.0 m

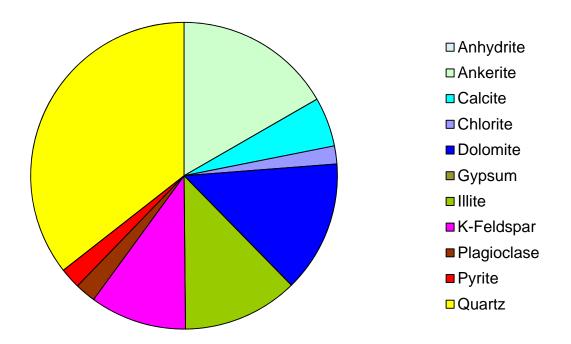
PLANE POLAR PHOTOMICROGRAPHS



The 2100.0-m Middle Bakken sample is burrowed siltstone containing quartz, feldspars, dolomite/Fe-dolomite, and clays, with calcite fill in some areas. It contains large, coarser-grained lens with calcite fill; however, most of the sample is silty quartz and dolomite, with some clays. Grains are angular and poorly sorted (10 to 80 μ m), with a majority of grains less than 40 μ m.

Applied Geology Laboratory		ID: 118646
	Mid	dle Bakken Unit C
Well Name: PTRC INJ 5-6-2-8 W2M		Depth: 2100.0 m

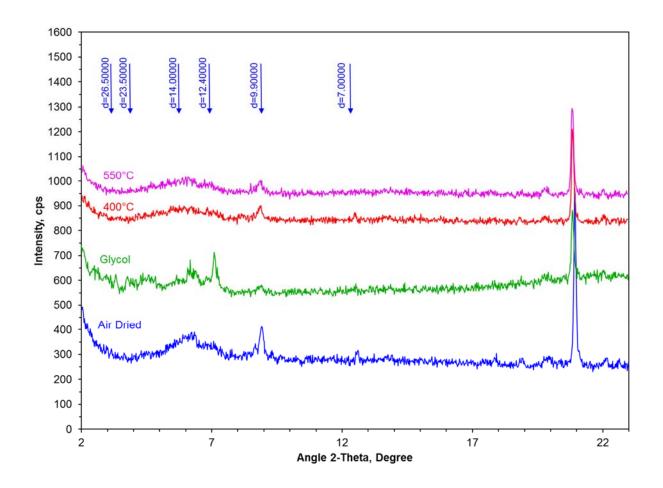
XRF BULK CHEMICAL COMPOSITION


Element	Reporting Convention (oxide)	wt%	
Si (silicon)	SiO_2	52.20	
Al (aluminum)	Al_2O_3	5.45	
Fe (iron)	Fe_2O_3	4.08	
Ti (titanium)	TiO_2	0.36	
P (phosphorus)	P_2O_5	0.11	
Ca (calcium)	CaO	15.29	
Mg (magnesium)	MgO	6.49	
Na (sodium)	Na ₂ O	0.68	
K (potassium)	K_2O	2.63	
S (sulfur)	SO_3	1.64	
Ba (barium)	BaO	0.02	
Cl (chloride)	Cl	0.69	
Mn (manganese)	MnO	0.13	
Sr (strontium)	SrO	0.01	
Unknowns	Due to the presence of carbonates*	10.23	
Total		100.01	

^{*} Sample effervesced in the presence of dilute HCl, verifying the presence of carbonates.

Applied Geology Laboratory		ID: 118646
	Mid	dle Bakken Unit C
Well Name: PTRC INJ 5-6-2-8 W2M		Depth: 2100.0 m

XRD MINERAL-PHASE DISTRIBUTION



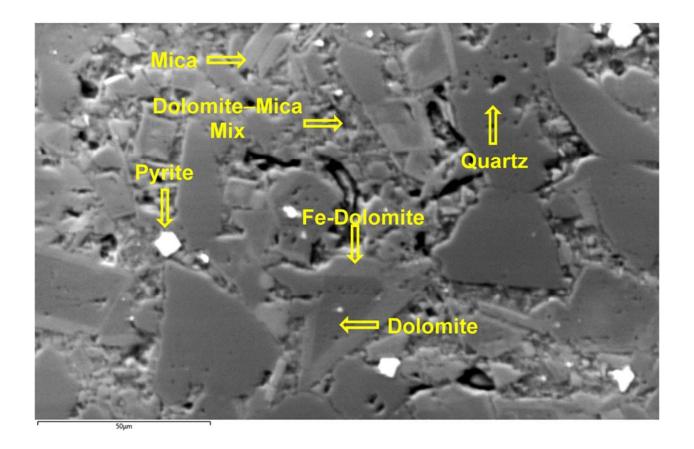
Mineral Phase	Formula	Relative wt%
Quartz	SiO_2	35.6
Pyrite	FeS_2	2.2
K-Feldspar	$KAlSi_3O_8$	10.2
Plagioclase	$Na_{0.5}Ca_{0.5}Al_{1.5}Si_{2.5}O_{8}$	2.2
Calcite		5.2
Dolomite	CaMg(CO ₃) ₂	13.9
Ankerite	CaMg _{0.45} Fe _{0.55} (CO ₃) ₂	16.7
Illite	$(K,H_3O)(Al,Mg,Fe)_2(Si,Al)_4O_{10}[(OH)_2,(H_2O)]$	12.2
Chlorite	$(Mg,Fe)_3(Si,Al)_4O_{10}$ - $(OH)_2 \cdot (Mg,Fe)_3(OH)_6$	1.9
Gypsum	$CaSO_4 \cdot 2(H_2O)$	0.0
Anhydrite	CaSO ₄	0.0
Total		100.1
Total Carbonates		35.8
Total Clay		14.0

Applied Geology Laboratory		ID: 118646
	Mid	dle Bakken Unit C
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2100.0 m

XRD CLAY TYPING

Clays Identified

Interstatified Illite/Smectite and Illite/Chlorite Possibly Sepiolite

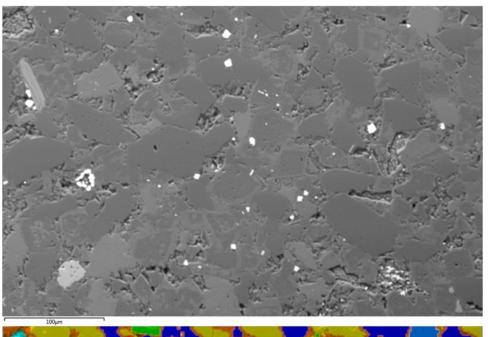

Applied Geology Laboratory		ID: 118646
	Mid	dle Bakken Unit C
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2100.0 m

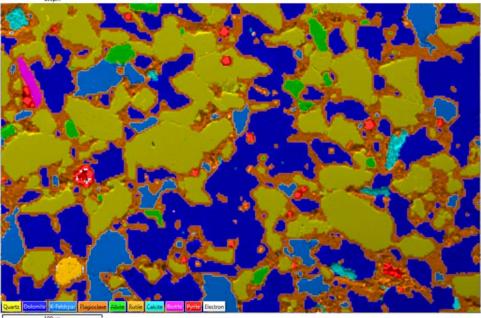
SCANNING ELECTRON MICROSCOPY (SEM)

Observed Mineral Phases

Mineral Phase	Mineral Phase
Quartz	Mica
Dolomite	Albite
K-Feldspar	Zircon
Calcite	Apatite
Plagioclase	Biotite
Fe-Dolomite	Clays
Pyrite	

High-Magnification Backscattered Electron (BSE) Image Annotated with Examples of Mineral Phases Identified


ID: 118646


Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2100.0 m

SEM BSE Image and Corresponding Digital Mineral Map Overlaid on BSE Image with Mineral-Phase 2-D Area Percentages

Phase	2-D	
Filase	area%	
Quartz	28.3	
Dolomite	30.7	
K-Feldspar	6.4	
Plagioclase	28.2	
Albite	1.5	
Rutile	0.3	
Calcite	1.0	
Biotite	0.3	
Pyrite	0.7	

The mineral map (bottom) allows full sorting of mineral phases and mineral associations that are indistinguishable in a conventional BSE image (top). The colors on the image are altered from the legend because of the overlay on the BSE image.

ID: 118646 Middle Bakken Unit C

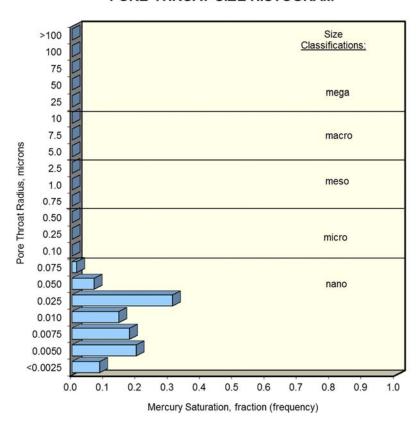
Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2100.0 m

CORE LABORATORIES, INC., HPMI SUMMARY DATA

See Appendix B for full Core Labs report.

Core Labs Sample ID S2 #118646-2m Depth 2100.00 m

Mercury Injection Data Summary


Maximum S _b /P _c *, fraction	Pore Throat Radius at 35% Mercury Saturation (R35), µm	Median Pore Throat Radius, µm
0.00022	0.0109	0.00809

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

	Pore	Grain	Bulk Volume,	Grain Density ,	Bulk Density ,
Weight	, g Volume, cm	³ Volume, cm ³	cm ³	g/cm ³	g/cm ³
10.94	2 0.251	4.009	4.264	2.729	2.566

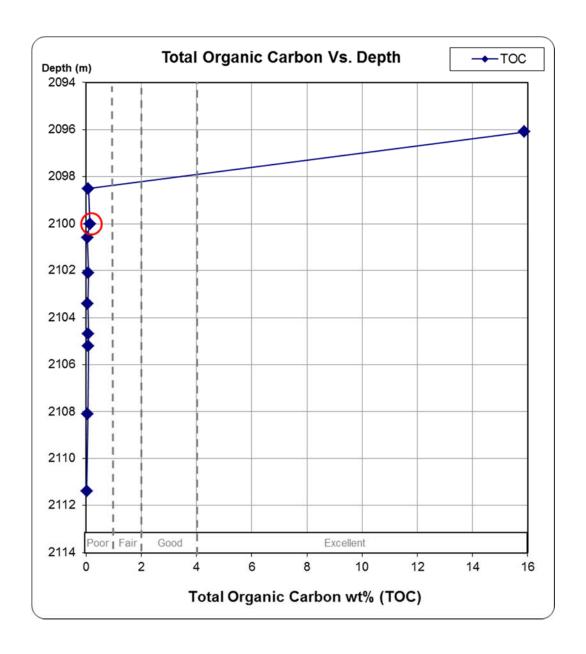
PORE THROAT SIZE HISTOGRAM

ID: 118646

Middle Bakken Unit C

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2100.0 m


CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S2-118646-2 Depth 2100 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.3	0.14	410

ID: 118647

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2100.6 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

Porosity

Pycnometer Effective Porosity Average, vol%
4.70

Volume and Density

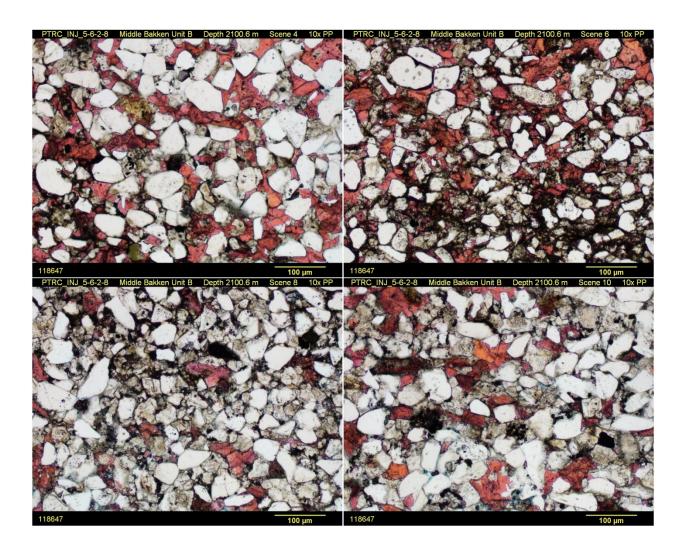
Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
41.04	2.559	39.111	2.686

Permeability

1 ci incability		
	Gas Permeability, mD	
	Pending	

Applied Geology Laboratory		ID: 118647
	Mid	dle Bakken Unit B
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2100.6 m

FULL THIN-SECTION SLIDE


ID: 118647

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2100.6 m

PLANE POLAR PHOTOMICROGRAPHS

This Middle Bakken Unit B sample is very fine sandstone to coarse siltstone. Quartz, feldspars, dolomite/Fe-dolomite, and minor clays with calcite fill and grain replacement are present. Finergrained areas have less calcite and are more dolomitic. Grains are poorly rounded and moderately sorted, ranging from 10 to $100 \, \mu m$, with most grains larger than $60 \, \mu m$.

ID: 118647

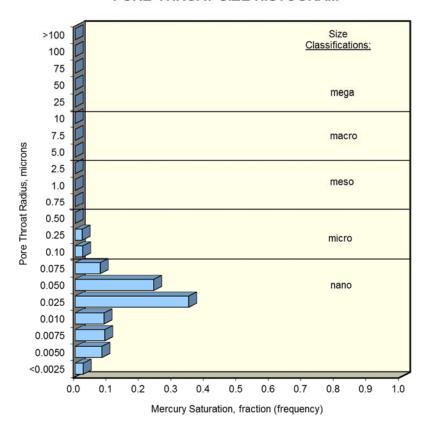
Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2100.6 m

CORE LABORATORIES, INC., HPMI SUMMARY DATA See Appendix B for full Core Labs report.

Core Labs Sample ID S3 #118647-2 Depth 2100.60 m

Mercury Injection Data Summary


Maximum S _b /P _c *,	Pore Throat Radius at 35%	Median Pore Throat
fraction	Mercury Saturation (R35), µm	Radius, µm
0.00046	0.0259	

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
8.786	0.180	3.137	3.318	2.801	2.648

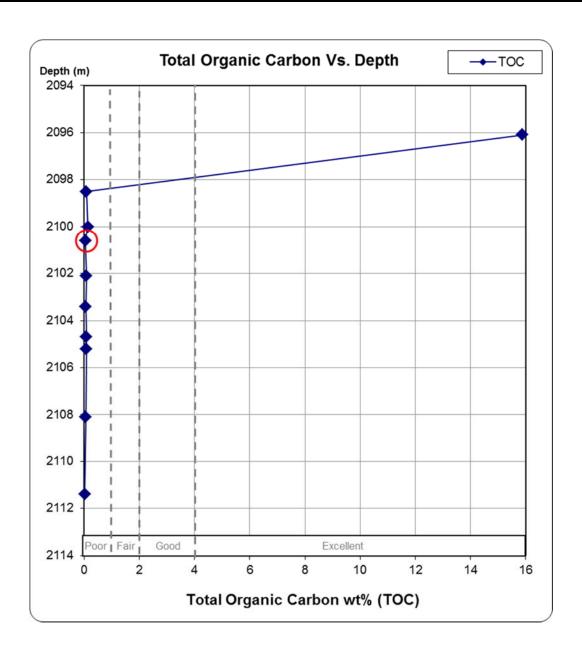
PORE THROAT SIZE HISTOGRAM

ID: 118647

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

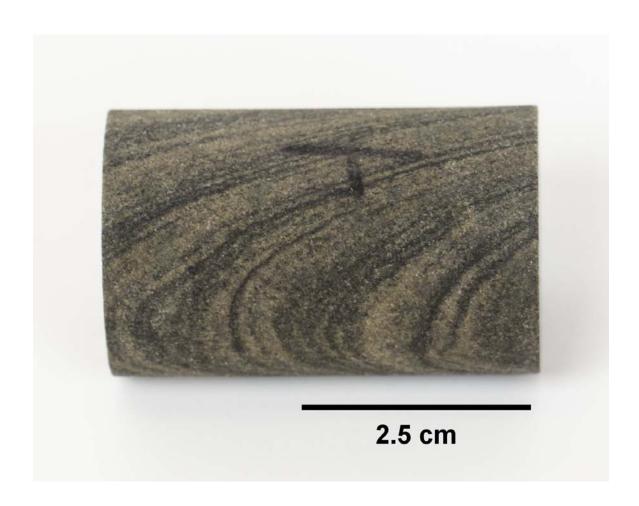
Depth: 2100.6 m


CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S3-118647-2 Depth 2100.6 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.7	0.04	426


Applied Geology Laboratory	ID: 118647
Mid	dle Bakken Unit B
Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2100.6 m

This page intentionally left blank.

EERC Lucy & Environmental Records Center® Putting Research into Practice UN® NORTH DAKOTA	Applied Geology Laboratory	ID: 118648
		dle Bakken Unit B
	Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2102.1 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

Porosity

Pycnometer Effective Porosity Average, vol%
13.90

Volume and Density

Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
11.801	2.348	10.161	2.727

Permeability

crincaphity	
Gas Perm	eability, mD
Per	nding

Applied Geology Laboratory		ID: 118648
	Middle Bakken Unit	
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2102.1 m

FULL THIN-SECTION SLIDE

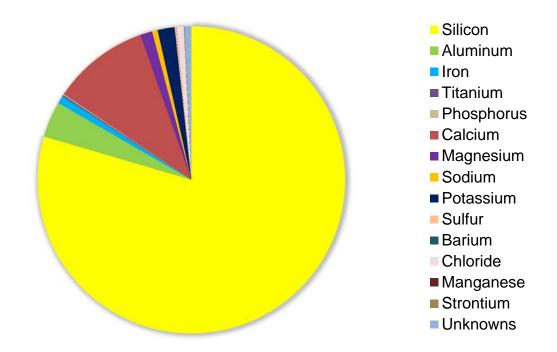
ID: 118648

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2102.1 m

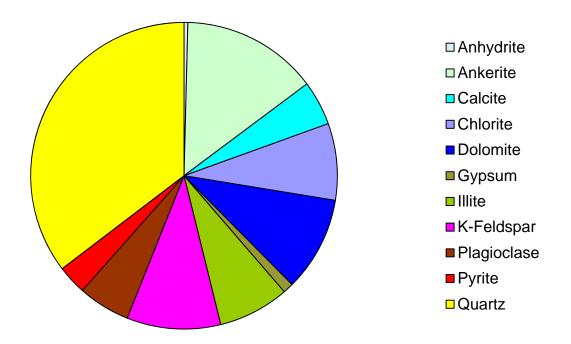
PLANE POLAR PHOTOMICROGRAPHS



The 2102.1-m Middle Bakken sample can be described as coarse siltstone to very fine sandstone, with coarse laminations. Calcite fill is common, and a few pores are visible. Some areas show some porosity that are non-calcite-filled. Dolomite and Fe-dolomite are common. The thin section shows quartz, feldspars, dolomite/Fe-dolomite, and clays. Some intergranular porosity is visible. Grains are poorly rounded and moderately sorted, ranging in size from 10 to 100 μ m, with a majority of grains larger than 60 μ m.

Applied Geology Laboratory		ID: 118648
	Mid	dle Bakken Unit B
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2102.1 m

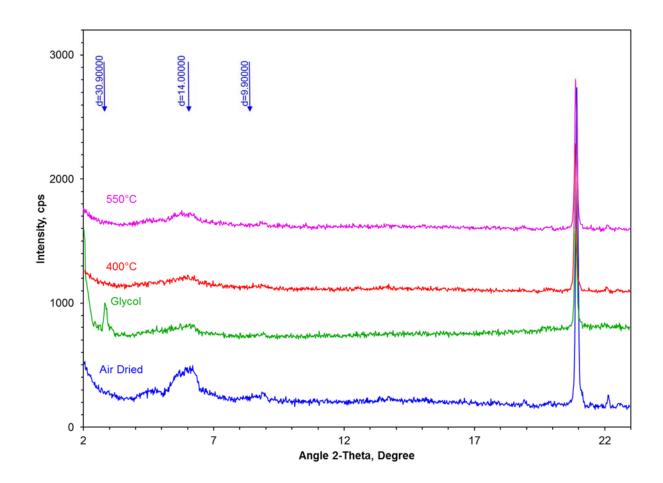
XRF BULK CHEMICAL COMPOSITION


Element	Reporting Convention (oxide)	wt%	
Si (silicon)	SiO_2	79.55	
Al (aluminum)	Al_2O_3	3.78	
Fe (iron)	Fe_2O_3	0.82	
Ti (titanium)	TiO_2	0.15	
P (phosphorus)	P_2O_5	0.11	
Ca (calcium)	CaO	10.20	
Mg (magnesium)	MgO	1.26	
Na (sodium)	Na ₂ O	0.59	
K (potassium)	K_2O	1.79	
S (sulfur)	SO_3	0.17	
Ba (barium)	BaO	0.02	
Cl (chloride)	Cl	0.78	
Mn (manganese)	MnO	0.03	
Sr (strontium)	SrO	0.01	
Unknowns	Due to the presence of carbonates*	0.73	
Total		99.99	

^{*} Sample effervesced in the presence of dilute HCl, verifying the presence of carbonates.

Applied Geology Laboratory		ID: 118648
	Mid	dle Bakken Unit B
Well Name: PTRC INJ 5-6-2-8 W2M		Depth: 2102.1 m

XRD MINERAL-PHASE DISTRIBUTION



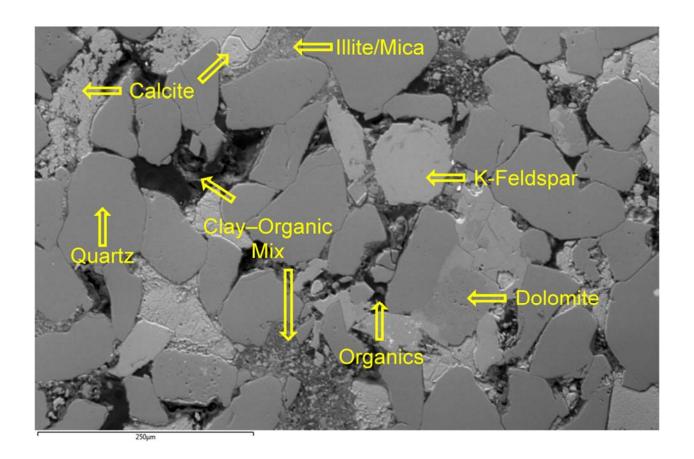
Mineral Phase	Formula	Relative wt%
Quartz	SiO_2	35.4
Pyrite	FeS_2	3.1
K-Feldspar	KAlSi ₃ O ₈	9.9
Plagioclase	$Na_{0.5}Ca_{0.5}Al_{1.5}Si_{2.5}O_{8}$	5.5
Calcite		4.7
Dolomite	$CaMg(CO_3)_2$	10.0
Ankerite	CaMg _{0.45} Fe _{0.55} (CO ₃) ₂	14.4
Illite	$(K,H_3O)(Al,Mg,Fe)_2(Si,Al)_4O_{10}[(OH)_2,(H_2O)]$	7.5
Chlorite	$(Mg,Fe)_3(Si,Al)_4O_{10}$ - $(OH)_2 \cdot (Mg,Fe)_3(OH)_6$	8.1
Gypsum	$CaSO_4 \cdot 2(H_2O)$	1.1
Anhydrite	CaSO ₄	0.4
Total		100.1
Total Carbonates		29.1
Total Clay		15.6

Applied Geology Laboratory		ID: 118648
N	lid	dle Bakken Unit B
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2102.1 m

XRD CLAY TYPING

Clays Identified

Interstratified Chlorite–Montmorillonite or Chlorite–Vermiculite (corrensite) Illite

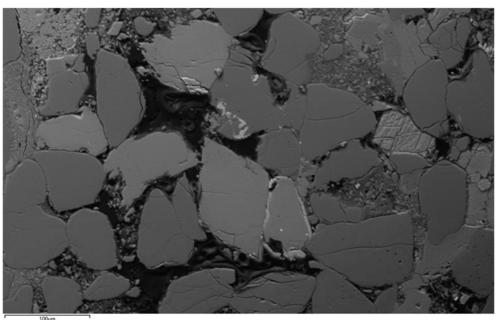

Applied Geology Laboratory		ID: 118648
	Mid	dle Bakken Unit B
Well Name: PTRC INL 5-6-2-8 W2M		Denth: 2102.1 m

SEM

Observed Mineral Phases

Mineral Phase	Mineral Phase
Calcite	Fe-Dolomite
Quartz	Illite
K-Feldspar	Mica
Dolomite	Albite
Organics	Clays
Apatite	

High-Magnification BSE Image Annotated with Examples of Mineral Phases Identified


ID: 118648


Middle Bakken Unit B

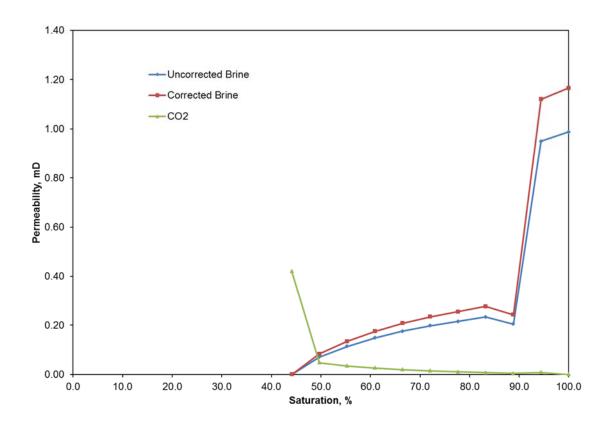
Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2102.1 m

SEM BSE Image and Corresponding Digital Mineral Map Overlaid on BSE Image with Mineral-Phase 2-D Area Percentages

Phase	2-D area%
Quartz	49.4
K-Feldspar	12.1
Calcite	5.7
Illite	12.3
Organic- Filled Pores	10.6
Dolomite	7.1
Albite	0.2

The mineral map (bottom) allows full sorting of mineral phases and mineral associations that are indistinguishable in a conventional BSE image (top). The colors on the image are altered from the legend because of the overlay on the BSE image.



Applied Geology Laboratory	ID: 118648
Mic	ddle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2102.1 m

RELATIVE PERMEABILITY

Parameter	Value		Brine Chemistry
Length	1.67	cm	238,000 mg/L NaCl
Diameter	3.00	cm	8210 mg/L KCl
Cross-Sectional Area	7.073	cm^2	42,600 mg/L CaCl ₂ •2H ₂ O
Pore Volume	1.64	cm ³	10,200 mg/L MgCl ₂ •6H ₂ O
Drainage Mass, dry	27.64	g	
Drainage Mass, end	28.48	g	283,000 mg/L TDS
Drainage Mass, end imbibition	NA	g	(total dissolved solids)
Brine Density	1.16	g/mL	
Brine Viscosity, uncorrected	0.905	ср	
Brine Viscosity, corrected	1.07	ср	
Water in Sample	0.84	g	
Water in Sample	0.72	mL	
Brine Saturation	44.13	% Pore Volume	
Brine Saturation	2.95	% Mass	

Permeability vs. Brine Saturation at 140°F

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2102.1 m

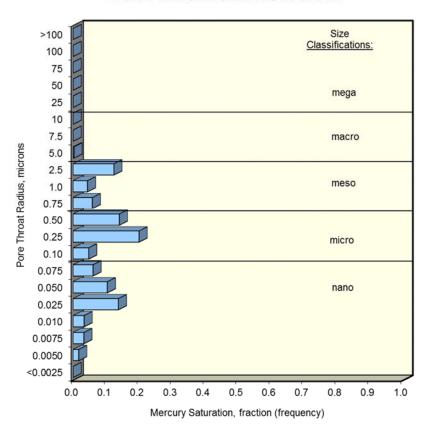
CORE LABORATORIES, INC., HPMI SUMMARY DATA

See Appendix B for full Core Labs report.

Core Labs Sample ID S4 #118648-2m Depth 2102.10 m

ID: 118648

Mercury Injection Data Summary


	Maximum S _b /P _c *,	Pore Throat Radius at 35%	Median Pore Throat
	fraction	Mercury Saturation (R35), μm	Radius, µm
,	0.00646	0.269	0.144

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

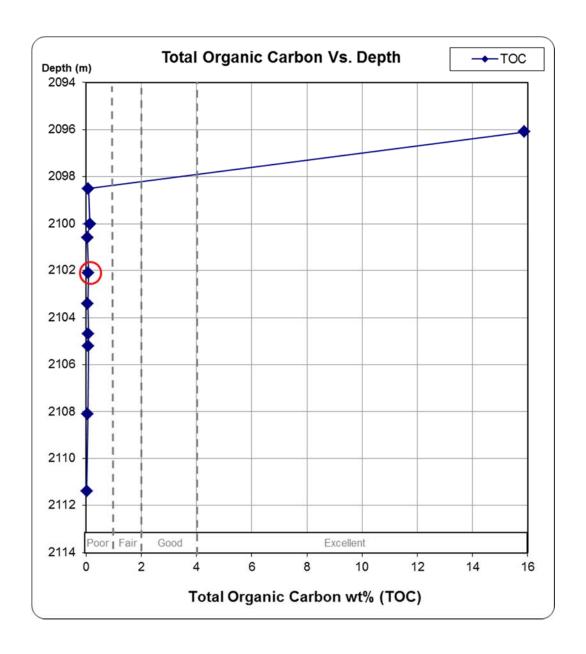
Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
4.401	0.093	1.617	1.710	2.722	2.573

PORE THROAT SIZE HISTOGRAM

ID: 118648 Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2102.1 m


CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S4-118648-2 Depth 2102.1 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.6	0.08	435

Applied Geology Laboratory	ID: 118648	
Mid	dle Bakken Unit B	
Well Name: PTRC_INI_5_6_2_8 W2M	Denth: 2102.1 m	

This page intentionally left blank.

ID: 118649

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2103.4 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

Porosity

╸.	orosity
	Pycnometer Effective Porosity Average, vol%
	7.26

Volume and Density

Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
12.389	2.536	11.490	2.734

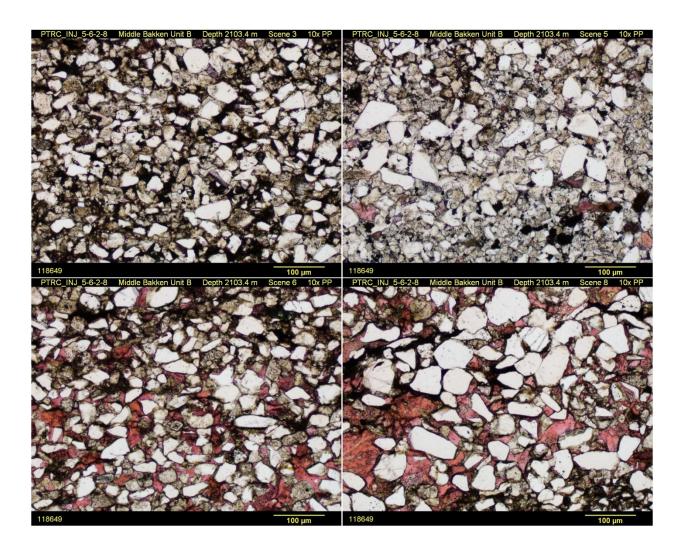
Permeability

Cincability				
	Gas Permeability, mD			
	Pending			

Applied Geology Laboratory ID: 118649 Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2103.4 m

FULL THIN-SECTION SLIDE


ID: 118649

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2103.4 m

PLANE POLAR PHOTOMICROGRAPHS

This Middle Bakken sample is coarsely laminated, sandy siltstone. Laminations are separated by clay layers and appear to be coarser grained at the bottom of the thin section. Calcite fill is common in some areas. Quartz, feldspars, dolomite/Fe-dolomite, and clays with minor calcite are present. Grains are subangular and poorly sorted, ranging in size from 5 to 90 μ m. Overgrowths are common.

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2103.4 m

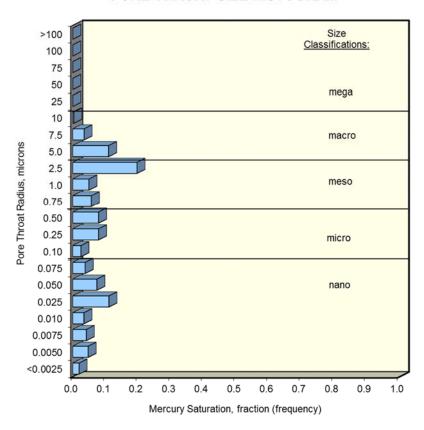
CORE LABORATORIES, INC., HPMI SUMMARY DATA

See Appendix B for full Core Labs report.Core Labs Sample ID S5 #118649-2m

Depth 2103.40 m

ID: 118649

Mercury Injection Data Summary


Maximum S _b /P _c *,	Pore Throat Radius at 35%	Median Pore Throat
fraction	Mercury Saturation (R35), µm	Radius, µm
0.0426	0.973	0.334

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

	Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
-	6.050	0.294	2.221	2.514	2.724	2.406

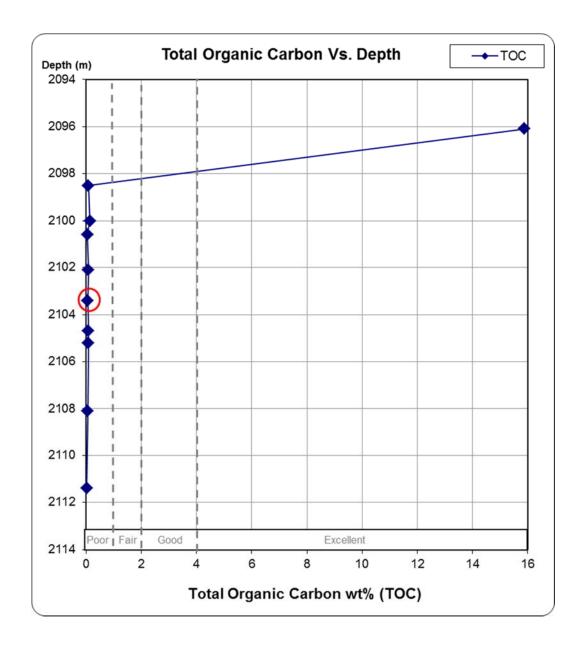
PORE THROAT SIZE HISTOGRAM

ID: 118649

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2103.4 m

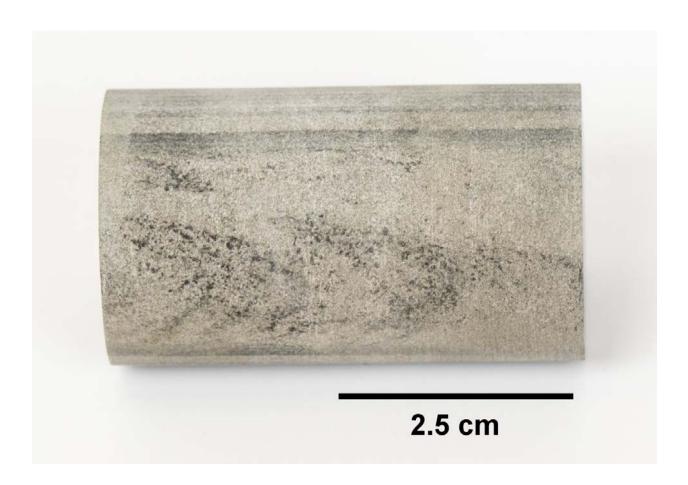

CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S5-118649-2 Depth 2103.4 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.5	0.05	436

Applied Geology Laboratory	ID: 118649
Mic	ldle Bakken Unit B
Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2103.4 m


This page intentionally left blank.

Applied Geology Laboratory	ID: 118652
Mi	ddle Bakken Unit E

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2104.7 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

Porosity

1 of only		
	Pycnometer Effective Porosity Average, vol%	
	8.42	

Volume and Density

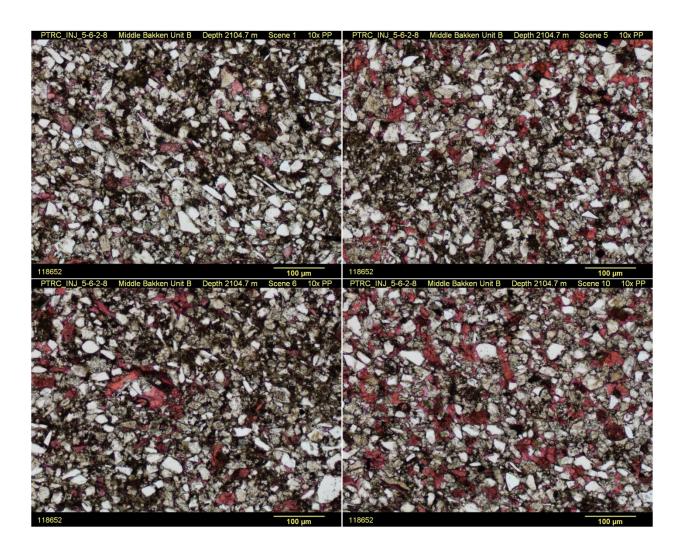
I	Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
	13.245	2.477	12.130	2.705

Permeability

1 crineability	
Gas Permeability, mD	
Pending	

Applied Geology Laboratory		ID: 118652
	Mid	dle Bakken Unit B
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2104.7 m

FULL THIN-SECTION SLIDE



ID: 118652 Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2104.7 m

PLANE POLAR PHOTOMICROGRAPHS

The Middle Bakken Unit B sample at 2104.7 m is burrowed siltstone consisting of quartz, feldspars, dolomite/Fe-dolomite, and clays. Calcite fill is common; no bedding or laminations are visible. Grains are angular to subrounded and moderately sorted, ranging in size from 5 to $50 \, \mu m$.

ID: 118652

Depth: 2104.7 m

Middle Bakken Unit B

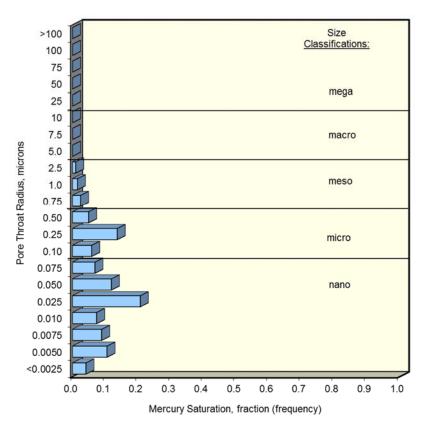
Well Name: PTRC_INJ_5-6-2-8 W2M

CORE LABORATORIES, INC., HPMI SUMMARY DATA

See Appendix B for full Core Labs report.Core Labs Sample ID S6 #118652-2m

Depth 2104.70 m

Mercury Injection Data Summary


	$\begin{array}{c} \text{Maximum S}_b/P_c*,\\ \text{fraction} \end{array}$	Pore Throat Radius at 35% Mercury Saturation (R35), μm	Median Pore Throat Radius, µm
,	0.00122	0.0542	0.0228

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
10.219	0.208	3.805	4.012	2.686	2.547

PORE THROAT SIZE HISTOGRAM

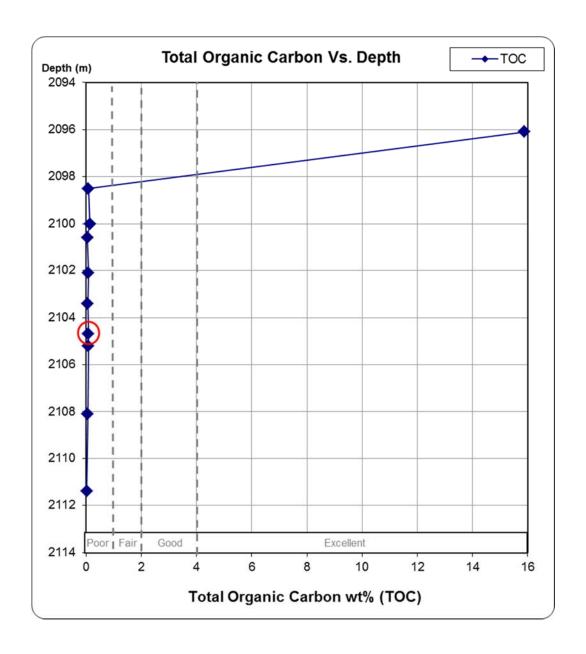
ID: 118652

Middle Bakken Unit B

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2104.7 m

CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.


Core Labs Sample ID S6-118649-2 (should be S6-118652-2)

Depth 2104.7 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.8	0.08	442

	Applied Geology Laboratory	ID: 118652
	Mid	dle Bakken Unit B
,	Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2104.7 m

This page intentionally left blank.

ID: 118653

Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2105.2 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

Porosity

٠.	orosity				
	Pycnometer Effective Porosity Average, vol%				
	5.74				

Volume and Density

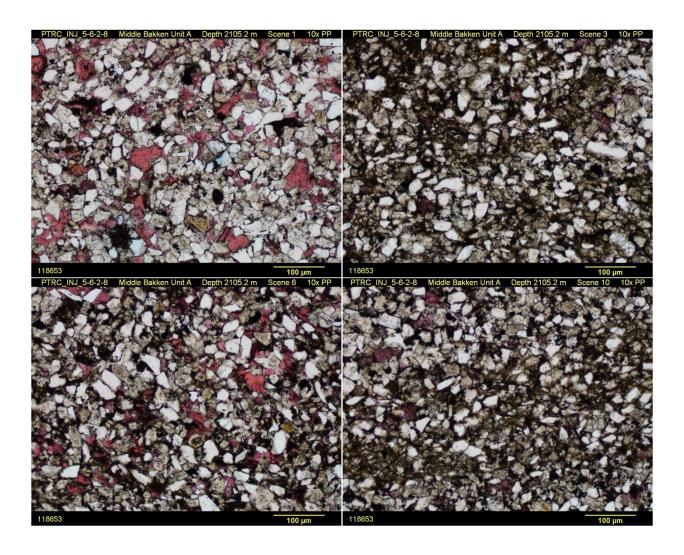
Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
12.64	2.579	11.914	2.736

Permeability

ci meability			
Gas Perm	eability, mD		
Per	nding		

Applied Geology Laboratory		ID: 118653
	Mid	dle Bakken Unit A
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2105.2 m

FULL THIN-SECTION SLIDE

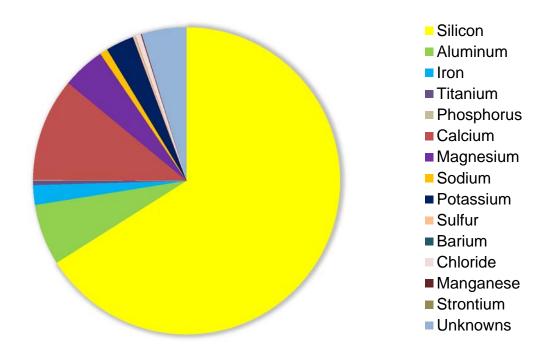

ID: 118653

Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2105.2 m

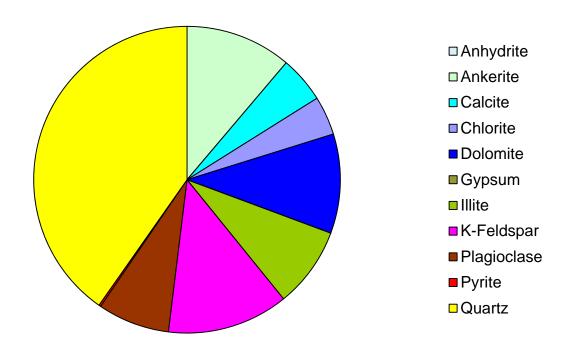
PLANE POLAR PHOTOMICROGRAPHS



The 2105.2-m Middle Bakken Unit A sample is burrowed siltstone consisting of quartz, feldspars, dolomite/Fe-dolomite, and clays. A portion of the thin-section slide is finer-grained, with little or no calcite fill between grains. Coarser-grained areas show calcite fill. Grains are angular to subangular and range in size from 5 to 60 μ m, with moderate sorting.

Applied Geology Laboratory		ID: 118653
	Mid	dle Bakken Unit A
Well Name: PTRC INJ 5-6-2-8 W2M		Depth: 2105.2 m

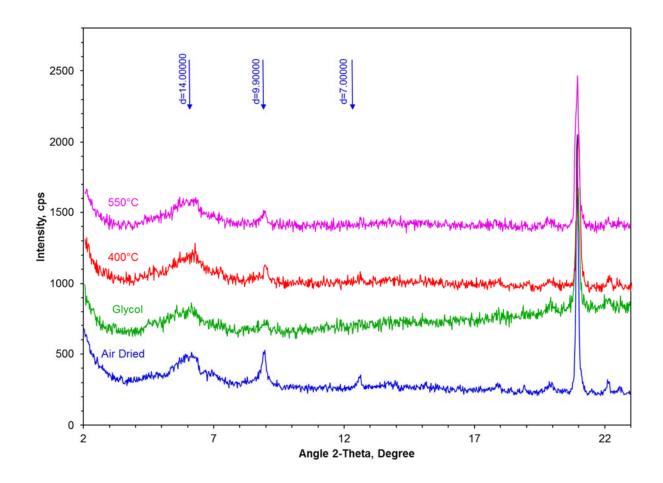
XRF BULK CHEMICAL COMPOSITION


Element	Reporting Convention (oxide)	wt%	
Si (silicon)	${ m SiO_2}$	66.05	
Al (aluminum)	Al_2O_3	6.44	
Fe (iron)	Fe_2O_3	2.08	
Ti (titanium)	${ m TiO_2}$	0.45	
P (phosphorus)	P_2O_5	0.08	
Ca (calcium)	CaO	10.90	
Mg (magnesium)	MgO	4.52	
Na (sodium)	Na ₂ O	0.83	
K (potassium)	K_2O	2.98	
S (sulfur)	SO_3	0.25	
Ba (barium)	BaO	0.03	
Cl (chloride)	Cl	0.59	
Mn (manganese)	MnO	0.09	
Sr (strontium)	SrO	0.01	
Unknowns	Due to the presence of carbonates*	4.72	
Total		100.02	

^{*} Sample effervesced in the presence of dilute HCl, verifying the presence of carbonates.

Applied Geology Laboratory		ID: 118653
	Mid	dle Bakken Unit A
Well Name: PTRC INJ 5-6-2-8 W2M		Depth: 2105.2 m

XRD MINERAL-PHASE DISTRIBUTION



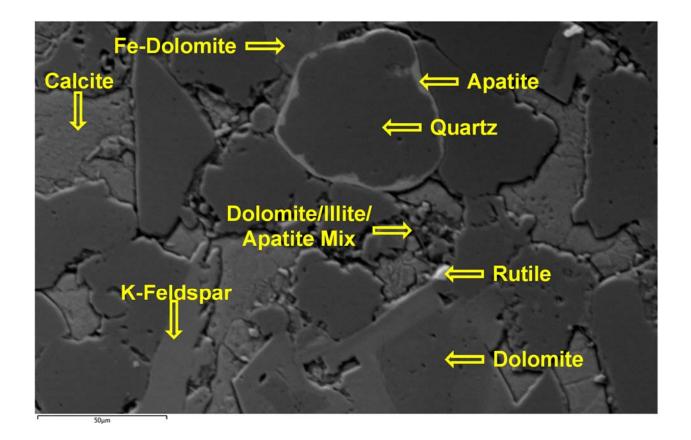
Mineral Phase	Formula	Relative wt%
Quartz	SiO_2	40.3
Pyrite	FeS_2	0.2
K-Feldspar	KAlSi ₃ O ₈	12.8
Plagioclase	Na _{0.5} Ca _{0.5} Al _{1.5} Si _{2.5} O ₈	7.6
Calcite		4.9
Dolomite	$CaMg(CO_3)_2$	10.5
Ankerite	CaMg _{0.45} Fe _{0.55} (CO ₃) ₂	11.2
Illite	$(K,H_3O)(Al,Mg,Fe)_2(Si,Al)_4O_{10}[(OH)_2,(H_2O)]$	8.5
Chlorite	$(Mg,Fe)_3(Si,Al)_4O_{10}$ - $(OH)_2 \cdot (Mg,Fe)_3(OH)_6$	4.1
Gypsum	$CaSO_4 \cdot 2(H_2O)$	0.0
Anhydrite	CaSO ₄	0.0
Total		100.1
Total Carbonates		26.6
Total Clay		12.6

Applied Geology Laboratory		ID: 118653
	Mid	dle Bakken Unit A
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2105.2 m

XRD CLAY TYPING

Clays Identified

Illite with Some Smectite Layers Chlorite

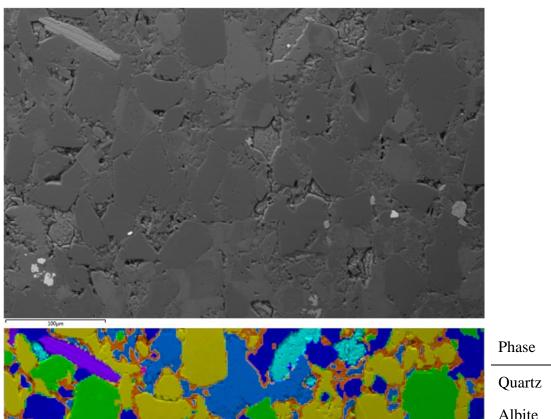

Applied Geology Laboratory		ID: 118653
	Mid	dle Bakken Unit A
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2105.2 m

SEM

Observed Mineral Phases

Mineral Phase	Mineral Phase	
Quartz	Zircon	
Dolomite	Pyrite	
K-Feldspar	Ankerite	
Calcite	Illite	
Apatite	Muscovite	
Albite	Fe-Dolomite	
Rutile	Monazite	

High-Magnification BSE Image Annotated with Examples of Mineral Phases Identified



ID: 118653

Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2105.2 m

SEM BSE Image and Corresponding Digital Mineral Map Overlaid on BSE Image with Mineral-Phase 2-D Area Percentages

	Phase	2-D area%
A STATE OF THE STA	Quartz	35.2
	Albite	12.4
	Dolomite	18.5
	K-Feldspar	11.3
	Illite	15.2
	Calcite	3.1
	Apatite	0.9
	Rutile	0.5
Quartz Albite Dotomite Cefedispos line Calcite Apatito Contr. Dente Electron	Pyrite	0.2

The mineral map (bottom) allows full sorting of mineral phases and mineral associations that are indistinguishable in a conventional BSE image (top). The colors on the image are altered from the legend because of the overlay on the BSE image.

ID: 118653

Middle Bakken Unit A

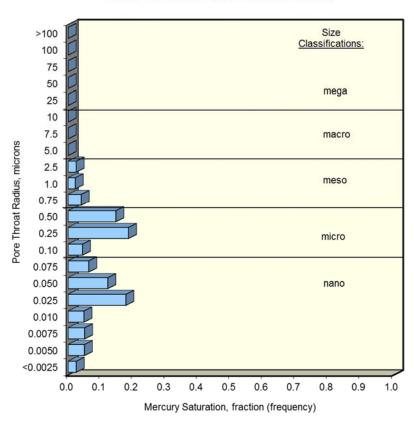
Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2105.2 m

CORE LABORATORIES, INC., HPMI SUMMARY DATA See Appendix B for full Core Labs report.

Core Labs Sample ID S7 #118653m Depth 2105.20 m

Mercury Injection Data Summary


Maximum S _b /P _c *,	Pore Throat Radius at 35%	Median Pore Throat
fraction	Mercury Saturation (R35), µm	Radius, µm
0.00483	0.152	

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

	Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
-	9.703	0.348	3.629	3.977	2.674	2.440

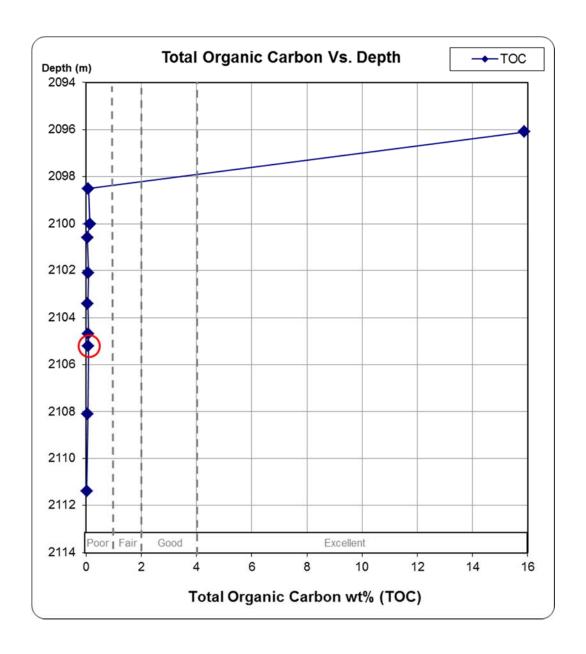
PORE THROAT SIZE HISTOGRAM

ID: 118653

Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2105.2 m


CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S7-118653 Depth 2105.2 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.1	0.08	432

Applied Geology Laboratory		ID: 118654
	Mid	dle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2108.1 m

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

Porosity

Pycnometer Effective Porosity Average, vol%
8.90

Volume and Density

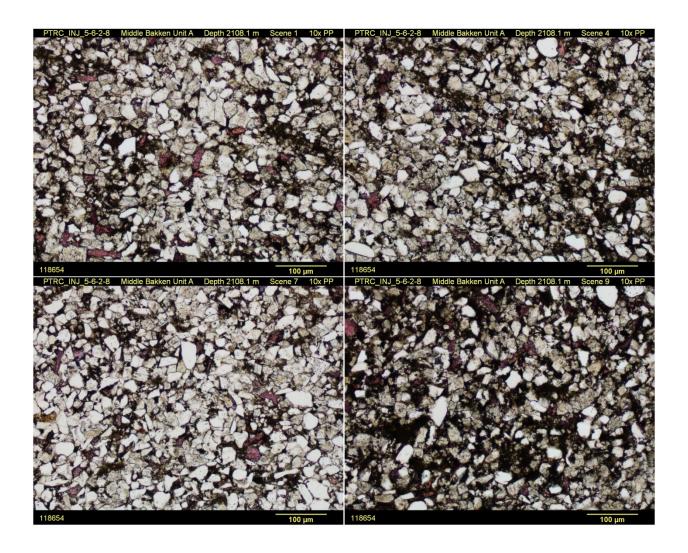
Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
12.924	2.483	11.774	2.726

Permeability

1 Clinicus mity	
Gas Permeability, mD	
Pending	

Applied Geology Laboratory		ID: 118654
	Mid	dle Bakken Unit A
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2108.1 m

FULL THIN-SECTION SLIDE



ID: 118654 Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2108.1 m

PLANE POLAR PHOTOMICROGRAPHS

This Middle Bakken sample is siltstone containing quartz, feldspars, dolomite/Fe-dolomite, and clays, with minor calcite as fossil fragments rather than pore filling. Grains are moderately sorted, are angular to subangular, and range in size from 10 to 60 μ m.

Applied Geology Laboratory ID: 118654 Middle Bakken Unit A

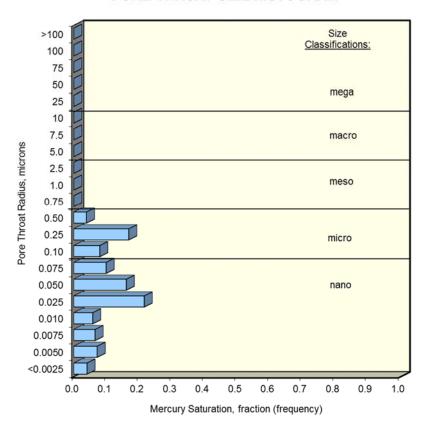
Well Name: PTRC_INJ_5-6-2-8 W2M Depth: 2108.1 m

CORE LABORATORIES, INC., HPMI SUMMARY DATA

See Appendix B for full Core Labs report.Core Labs Sample ID S8 #118654-2m

Depth 2108.10 m

Mercury Injection Data Summary


$\begin{array}{c} \text{Maximum S}_b/P_c*,\\ \text{fraction} \end{array}$	Pore Throat Radius at 35% Mercury Saturation (R35), μm	Median Pore Throat Radius, µm
0.00135	0.0583	0.0306

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

	Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
-	9.293	0.248	3.420	3.669	2.717	2.533

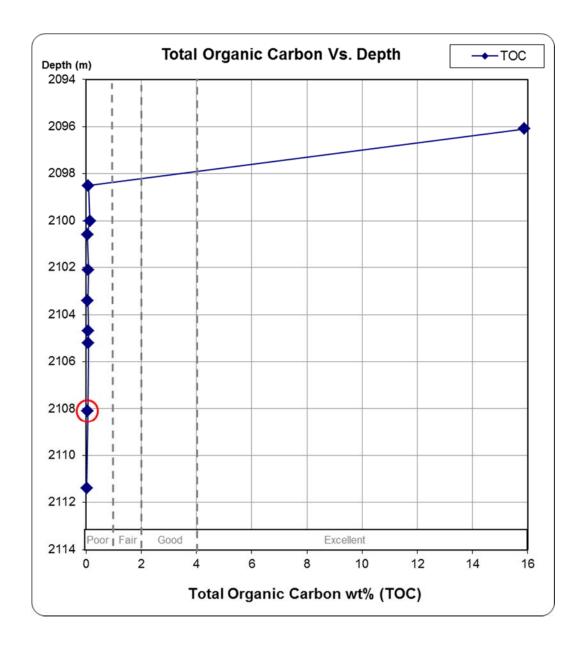
PORE THROAT SIZE HISTOGRAM

ID: 118654

Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2108.1 m


CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S8-118654-2 Depth 2108.1 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.4	0.05	442

Applied Geology Laboratory	ID: 118654
Mid	dle Bakken Unit A
Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2108.1 m

This page intentionally left blank.

EERC	Applied Geology Laboratory	ID: 118655		
Energy & Environmental Research Center® Putting Research into Practice	Mid	Middle Bakken Unit A		
THE UNIVERSITY OF NORTH DAKOTA	Well Name: PTRC_INJ_5-6-2-8 W2M	Depth: 2111.4 m		
		•		

SAMPLE PHOTOGRAPH

PHYSICAL PROPERTIES

T	• 4
Por	OSITV
101	Josep

Pycnometer Effective Porosity Average, vol%
5.86

Volume and Density

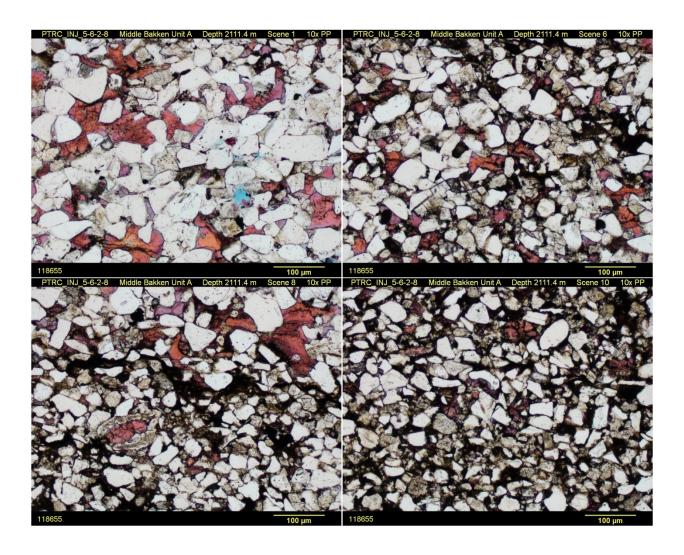
Bulk Volume, cm ³	Bulk Density, g/cm ³	Grain Volume, cm ³	Grain Density, g/cm ³
12.943	2.549	12.184	2.708

Permeability

1 ci incubinty		
	Gas Permeability, mD	
	Pending	

Applied Geology Laboratory		ID: 118655	
	Mid	Middle Bakken Unit A	
Well Name: PTRC_INJ_5-6-2-8 W2M		Depth: 2111.4 m	

FULL THIN-SECTION SLIDE


ID: 118655

Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2111.4 m

PLANE POLAR PHOTOMICROGRAPHS

The lowest Middle Bakken Unit A sample analyzed is laminated, very fine sandstone to coarse siltstone. Quartz, feldspars, dolomite/Fe-dolomite, and clays are present. Quartz overgrowths and areas of calcite pore filling are common, but not in all layers. These are mostly associated with coarser grains where there is little clay and some porosity visible. Grains are subrounded and moderately sorted, ranging in size from 30 to $100 \, \mu m$.

ID: 118655

Middle Bakken Unit A

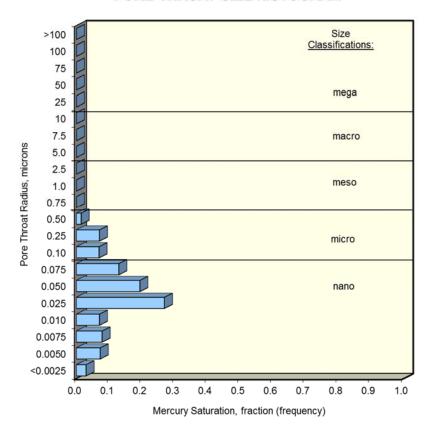
Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2111.4 m

CORE LABORATORIES, INC., HPMI SUMMARY DATA See Appendix B for full Core Labs report.

Core Labs Sample ID S9 #118655m Depth 2111.40 m

Mercury Injection Data Summary


-:		<i>J</i>	
	Maximum S _b /P _c *,	Pore Throat Radius at 35%	Median Pore Throat
	fraction	Mercury Saturation (R35), µm	Radius, µm
•	0.00090	0.0394	0.0232

^{*} Volume of mercury (S_b) -to-capillary pressure (P_c) ratio. The maximum S_b/P_c is used to represent the point on a capillary pressure curve where all of the major connected pore spaces controlling permeability have been intruded with mercury.

Sample Parameters

	Weight, g	Pore Volume, cm ³			Grain Density, g/cm ³	Bulk Density, g/cm ³
_	12.655	0.343	4.687	5.030	2.700	2.516

PORE THROAT SIZE HISTOGRAM

ID: 118655

Middle Bakken Unit A

Well Name: PTRC_INJ_5-6-2-8 W2M

Depth: 2111.4 m


CORE LABORATORIES, INC., TOC AND ROCK-EVAL SUMMARY DATA See Appendix C for full Core Labs report.

Core Labs Sample ID S9-118655 Depth 2111.4 m

TOC and ROCK-EVAL Data Summary

Sample Weight, mg	TOC, wt%	T _{max} , °C
60.7	0.02	440

APPENDIX B

CORE LABORATORIES HIGH-PRESSURE MERCURY INJECTION SUMMARY REPORT

ADVANCED CORE ANALYSIS STUDY

University of North Dakota Aquistore

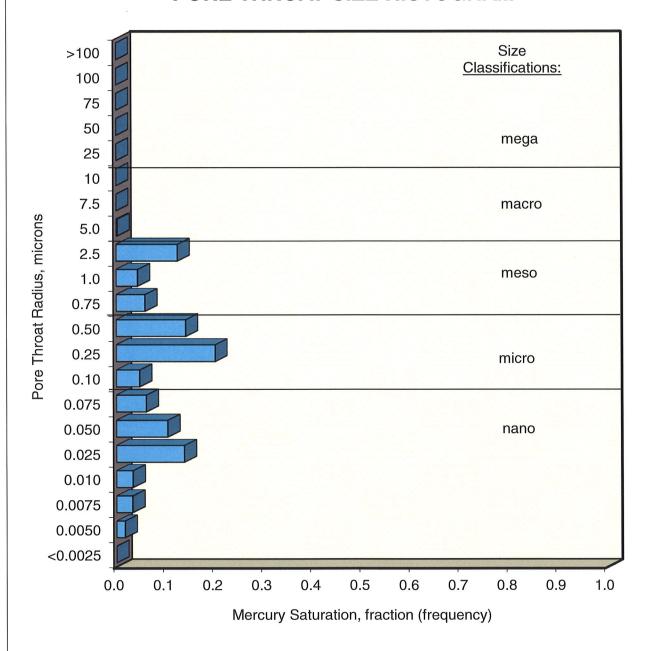
INTERIM DATA

Submitted to:

University of North Dakota

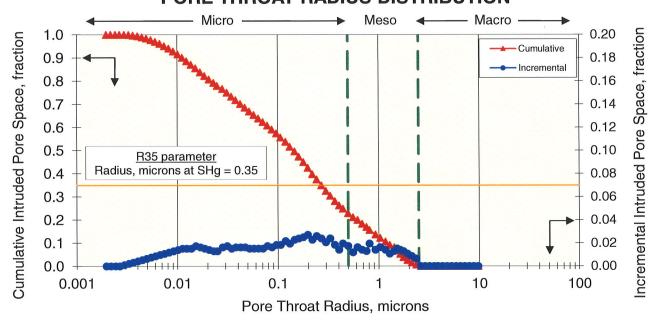
August 18, 2014

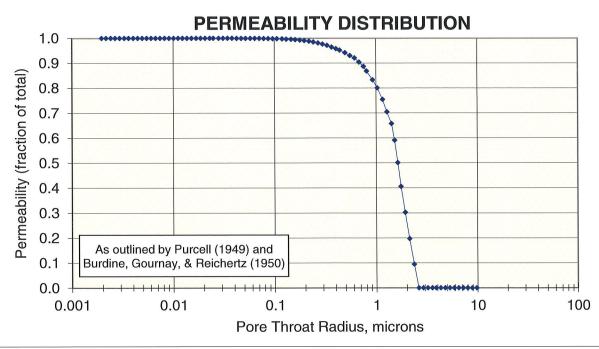
Performed by:


Core Laboratories
Petroleum Services Division
6316 Windfern
Houston, Texas 77040

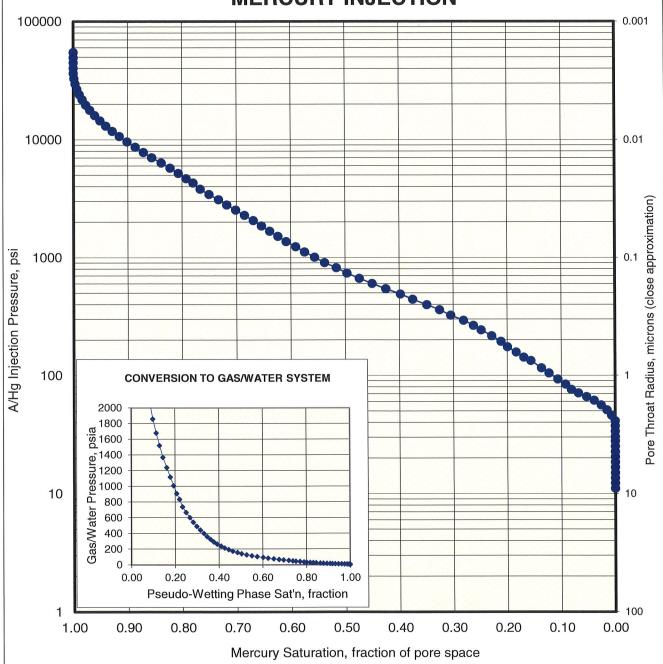
HOU-140757

The analytical results, opinions, or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions, or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations, or profitableness of any oil, gas, coal, or other mineral, property, well, or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.


Company:	University of North Dakota	Sample: S4 #118648-2m		un-	Host Plug		
Well:	Aquistore	Depth, meters	3:	2102.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:		N/A	-	-	
		Permeability to Air, md:		N/A	-	-	
		Swanson Permeability, md: Porosity, fraction:			0.0790	-	-
					0.055	-	-
		maximum St	o/Pc, fract	ion:	0.00646		
		R35, microns	3:		0.269		
		R50 (median p	ore throat ra	adius):	0.144		


PORE THROAT SIZE HISTOGRAM

Company:	ompany: University of North Dakota Sample: S4 #118648-2m		Sample: S4 #118648-2m		un-	 Host Plug 	
Well:	Aquistore	Depth, meters	3:	2102.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:			N/A	-	-
		Permeability to Air, md:			N/A	-	-
		Swanson Permeability, md: Porosity, fraction:			0.0790	-	-
					0.055	-	-
		maximum St	o/Pc, frac	tion:	0.00646		
		R35, microns:			0.269		
		R50 (median pore throat radius):			0.144		


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample: S4 #118648-2m		un-	Host Plug		
Well:	Aquistore	Depth, meters	3:	2102.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:			N/A	-	-
		Permeability to Air, md:			N/A	-	-
		Swanson Permeability, md:		0.0790	-	-	
		Porosity, fraction:		0.055	-	-	
		maximum Sb/Pc, fraction:		0.00646			
		R35, microns:		0.269			
		R50 (median pore throat radius):		0.144			

MERCURY INJECTION

Company: University of North Dakota

Well:

Aquistore

File:

HOU-140757

Sample:	S4 #118648-2m	un-	Host Plug		
Depth, meters:	2102.10	stressed	n/a	n/a	
Klinkenberg Pe	ermeability, md:	N/A	-	-	
Permeability to	N/A	-	-		
Swanson Perm	0.0790	-	-		
Porosity, fraction	on:	0.055		-	

maximum Sb/Pc, fraction:

0.00646

R35, microns:

0.269

R50 (median pore throat radius):

0.144

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	Conversion to other Laboratory Fluid Systems, psia			Estimated Height Above Free Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
44.4	0.000	1.000	9.72	0.00777	2.15	0.716	1.24	4.49	8.92
11.1 12.3	0.000	1.000	9.72 8.79	0.00777	2.13	0.710	1.37	4.49	9.89
13.6	0.000	1.000	7.93	0.00860	2.63	0.732	1.52	5.50	10.9
15.0	0.000	1.000	7.16	0.00932	2.03	0.972	1.68	6.06	12.1
16.7	0.000	1.000	6.46	0.0103	3.23	1.08	1.87	6.75	13.4
18.5	0.000	1.000	5.84	0.0117	3.58	1.19	2.07	7.48	14.9
20.5	0.000	1.000	5.27	0.0129	3.96	1.32	2.29	8.28	16.5
20.5 22.7	0.000	1.000	4.74	0.0143	4.41	1.47	2.54	9.17	18.2
25.2	0.000	1.000	4.74	0.0139	4.88	1.63	2.82	10.2	20.3
27.9	0.000	1.000	3.86	0.0177	5.41	1.80	3.12	11.3	22.4
30.4	0.000	1.000	3.54	0.0213	5.89	1.96	3.40	12.3	24.4
33.8	0.000	1.000	3.19	0.0237	6.54	2.18	3.78	13.7	27.2
37.4	0.000	1.000	2.88	0.0262	7.25	2.42	4.19	15.1	30.1
41.4	0.000	1.000	2.60	0.0290	8.02	2.67	4.63	16.7	33.3
46.0	0.007	0.993	2.34	0.0322	8.91	2.97	5.14	18.6	37.0
51.1	0.015	0.985	2.11	0.0358	9.90	3.30	5.71	20.7	41.1
56.3	0.026	0.974	1.92	0.0394	10.9	3.63	6.29	22.8	45.3
61.7	0.039	0.961	1.75	0.0433	12.0	3.99	6.90	24.9	49.6
66.3	0.053	0.947	1.63	0.0465	12.8	4.28	7.42	26.8	53.3
71.1	0.068	0.932	1.52	0.0499	13.8	4.59	7.96	28.7	57.1
76.1	0.081	0.919	1.42	0.0534	14.7	4.92	8.51	30.8	61.2
84.4	0.092	0.908	1.28	0.0592	16.4	5.45	9.44	34.1	67.8
93.2	0.106	0.894	1.16	0.0653	18.1	6.02	10.4	37.7	74.9
105	0.123	0.877	1.03	0.0736	20.3	6.78	11.7	42.4	84.4
116	0.137	0.863	0.926	0.0816	22.6	7.52	13.0	46.9	93.2
134	0.156	0.844	0.807	0.0936	25.9	8.63	14.9	54.2	108
143	0.169	0.831	0.753	0.100	27.7	9.24	16.0	57.8	115
158	0.183	0.817	0.681	0.111	30.7	10.2	17.7	63.9	127
175	0.200	0.800	0.615	0.123	34.0	11.3	19.6	70.7	141
195	0.211	0.789	0.554	0.136	37.7	12.6	21.8	78.8	157
217	0.229	0.771	0.497	0.152	42.0	14.0	24.3	87.7	174
244	0.248	0.752	0.441	0.171	47.3	15.8	27.3	98.6	196
266	0.262	0.738	0.405	0.186	51.5	17.2	29.7	108	214
294	0.281	0.719	0.367	0.206	56.9	19.0	32.9	119	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S4 #118648-2m	un-	Host Plug		
Depth, meters:	2102.10	stressed	n/a	n/a	
Klinkenberg Pe	ermeability, md:	N/A	-	-	
Permeability to	N/A	-	-		
Swanson Perm	0.0790	-	-		
Porosity, fraction	on:	0.055	-	-	

maximum Sb/Pc, fraction: 0.00646 R35, microns: 0.269 R50 (median pore throat radius): 0.144

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,			to other Laboratory Fluid Systems, psia		Estimate Above Wate	Free r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
205	0.005	0.605	0.001	0.228	63.0	21.0	36.4	131	261
325 361	0.305 0.325	0.695 0.675	0.331 0.299	0.253	69.9	23.3	40.4	146	290
399	0.325	0.675	0.299	0.280	77.4	25.8 25.8	40.4 44.7	161	321
399 444	0.349	0.625	0.270	0.280	86.1	25.6 28.7	44.7 49.7	179	357
444 491	0.375	0.625	0.243	0.311	95.1	26.7 31.7	49.7 54.9	179	395
	0.398	0.602	0.220	0.344	106	31.7 35.2	60.9	220	438
545	0.425	0.575	0.198	0.362	117	35.2 38.9	60.9 67.4	220 244	436 485
603	0.450	0.526	0.179	0.423	117	43.2	74.7	2 44 270	537
668 740	0.474		0.161	0.468	143	43.2 47.8	82.8	299	595
740 821	0.497	0.503 0.484	0.146	0.576	159	53.1	91.9	332	660
909	0.538	0.464	0.131	0.637	176	58.7	102	367	731
		0.462	0.119	0.637		65.4	113	408	812
1010	0.556	0.425		0.710	196 216	72.1	125	408 453	900
1120	0.575 0.591	0.425	0.0965	0.783	216 240	72.1 79.9	138	453 501	900 997
1240 1370	0.608	0.409	0.0871	0.867	240 266	79.9 88.6	153	554	1100
			0.0786	1.06	294	98.1	170	614	1220
1520	0.624	0.376	0.0709	1.18	29 4 326	109	188	679	1350
1680	0.639	0.361	0.0640		326 361	120	209	752	1500
1860	0.654	0.346	0.0578	1.31	401	134	209	837	1660
2070	0.669	0.331	0.0521	1.45	401 444	148	256	925	1840
2290	0.685	0.315	0.0471	1.61			284	925 1030	2040
2540	0.702	0.298	0.0425	1.78	492	164	284 314	1140	
2810	0.718	0.282	0.0383	1.97 2.18	545	182			2260
3110	0.733	0.267	0.0346	2.18	603	201	348 386	1260	2500 2770
3450	0.751	0.249	0.0312		669	223 247	428	1390	3070
3820	0.767	0.233	0.0282	2.68	741		428 483	1540	3470
4320	0.780	0.220	0.0250	3.03	837	279		1750	
4690	0.793	0.207	0.0230	3.29	909	303	525	1900	3770
5200	0.807	0.193	0.0207	3.65	1010	336	582	2100	4180
5760	0.822	0.178	0.0187	4.04	1120	372	645	2330	4630
6380	0.838	0.162	0.0169	4.48	1240	412	714	2580	5130
7070	0.856	0.144	0.0152	4.96	1370	457	791	2860	5680
7840	0.871	0.129	0.0137	5.50	1520	506	877	3170	6300
8680	0.886	0.114	0.0124	6.09 6.75	1680 1860	561 621	972 1080	3510 3890	6980 7730
9620	0.901	0.099	0.0112	0.75	1900	021	1080	3890	7730

Company: University of North Dakota

Well:

Aquistore

File:

HOU-140757

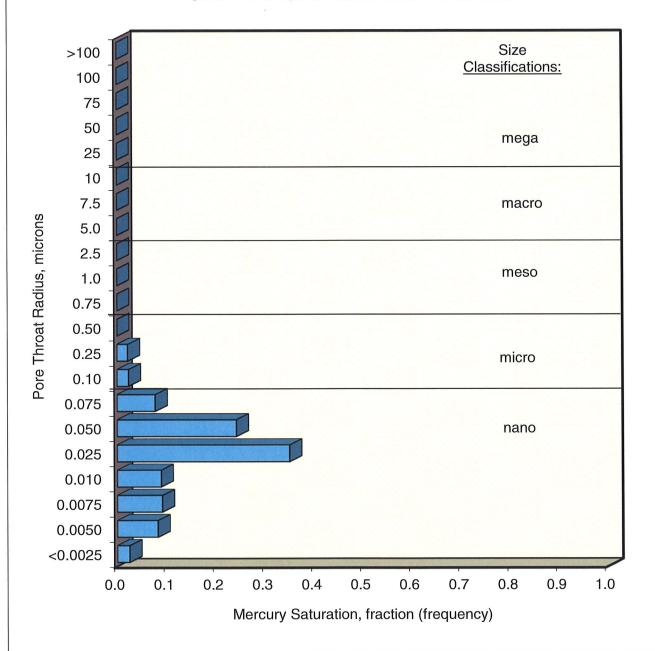
Sample:	S4 #118648-2m	un-	Host	Plug
Depth, meters:	2102.10	stressed	n/a	n/a
Klinkenberg Po	N/A	-	-	
Permeability to	N/A	-	-	
Swanson Pern	0.0790	-	-	
Porosity, fracti	on:	0.055	-	-

maximum Sb/Pc, fraction:

0.00646

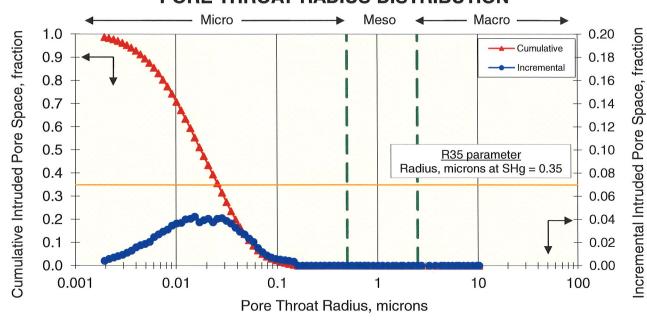
R35, microns:

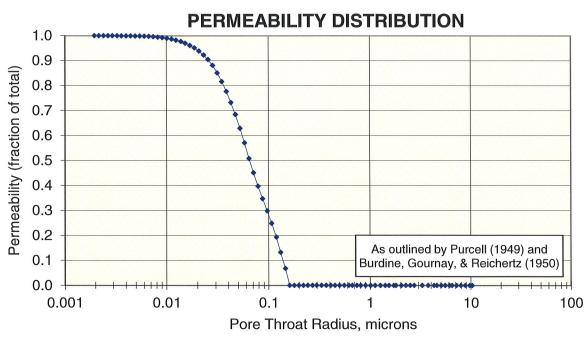
0.269


R50 (median pore throat radius):

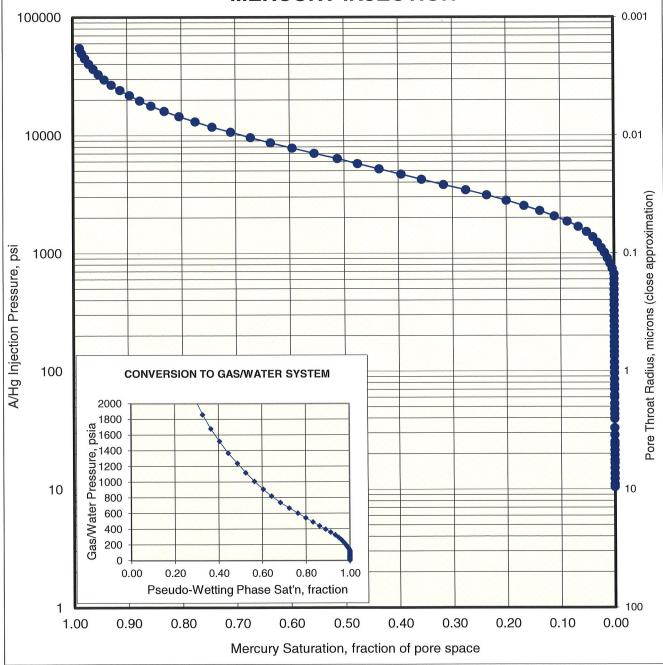
0.144

		Pseudo-	Pore			Conversion	n .	Estimate	ed Height
Injection	Mercury	Wetting	Throat		to c	ther Labora	atory	Above	e Free
Pressure,	Saturation,	Saturation,	Radius,	J	Fluid Systems, psia			Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10700	0.915	0.085	0.0101	7.47	2070	689	1190	4320	8600
11800	0.928	0.072	0.00912	8.28	2290	763	1320	4770	9480
13100	0.940	0.060	0.00823	9.18	2540	845	1460	5290	10500
14500	0.951	0.049	0.00743	10.2	2810	937	1620	5860	11700
16100	0.961	0.039	0.00671	11.3	3110	1040	1800	6510	12900
17800	0.970	0.030	0.00605	12.5	3450	1150	1990	7190	14300
19700	0.977	0.023	0.00546	13.8	3820	1270	2210	7960	15800
21900	0.984	0.016	0.00493	15.3	4240	1410	2450	8850	17600
24200	0.989	0.011	0.00445	17.0	4690	1560	2710	9780	19500
26800	0.993	0.007	0.00402	18.8	5200	1730	3000	10800	21500
29700	0.997	0.003	0.00362	20.8	5760	1920	3330	12000	23900
32900	0.999	0.001	0.00327	23.1	6380	2130	3680	13300	26400
36500	1.000	0.000	0.00295	25.6	7070	2360	4080	14800	29300
40400	1.000	0.000	0.00266	28.3	7840	2610	4520	16300	32500
44800	1.000	0.000	0.00241	31.4	8680	2890	5010	18100	36000
49600	1.000	0.000	0.00217	34.8	9620	3210	5550	20000	39900
55000	1.000	0.000	0.00196	38.6	10700	3550	6150	22200	44200


Company:	University of North Dakota	Sample: S3 #118647-2		un-	Host Plug		
Well:	Aquistore	Depth, meters	:	2100.60	stressed	n/a	n/a
File: I	HOU-140757	Klinkenberg F	Permeabil	lity, md:	N/A	-	-
		Permeability	to Air, mo	d:	N/A	-	-
		Swanson Permeability, md:			0.000899	-	-
		Porosity, fraction:				-	-
		maximum Sb/Pc, fraction:			0.00046		
		R35, microns	:		0.0259		
		R50 (median pore throat radius):			0.0175		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample:	S3 #118647-2	un-	Host Plug	
Well:	Aquistore	Depth, meters	3: 2100.60	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg I	Permeability, md:	N/A	-	-
		Permeability	to Air, md:	N/A	-	-
		Swanson Pe	0.000899	-	-	
		Porosity, fraction:			-	-
		maximum St	maximum Sb/Pc, fraction:			
		R35, microns	:	0.0259		
		R50 (median p	ore throat radius):	0.0175		


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample:	S3 #1	18647-2	un-	Host	Plug
Well:	Aquistore	Depth, meters	:	2100.60	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg F	Permeabil	ity, md:	N/A	-	-
		Permeability	to Air, mo	l:	N/A	-	-
		Swanson Permeability, md:			0.000899	-	-
		Porosity, frac	0.054	-	-		
		maximum Sb/Pc, fraction:			0.00046		
		R35, microns:			0.0259		
		R50 (median p	ore throat ra	adius):	0.0175		

MERCURY INJECTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S3 #118647-2	un-	Host	Plug
Depth, meters:	2100.60	stressed	n/a	n/a
Klinkenberg Perr	neability, md:	N/A	-	-
Permeability to A	N/A	-	-	
Swanson Perme	0.000899	-	-	
Porosity, fraction	:	0.054	-	-

maximum Sb/Pc, fraction: 0.00046 R35, microns: 0.0259 R50 (median pore throat radius): 0.0175

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	Flui	Conversion other Labora d Systems,	ntory psia	Estimated Height Above Free Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10.5	0.000	1.000	10.3	0.000788	2.03	0.678	1.17	4.24	8.44
11.1	0.000	1.000	9.74	0.000830	2.14	0.714	1.24	4.49	8.92
12.3	0.000	1.000	8.79	0.000920	2.38	0.792	1.37	4.97	9.89
13.6	0.000	1.000	7.93	0.00102	2.63	0.878	1.52	5.50	10.9
15.1	0.000	1.000	7.16	0.00113	2.92	0.972	1.68	6.10	12.1
16.7	0.000	1.000	6.47	0.00125	3.23	1.08	1.86	6.75	13.4
17.7	0.000	1.000	6.09	0.00133	3.43	1.14	1.98	7.15	14.2
19.5	0.000	1.000	5.53	0.00146	3.78	1.26	2.18	7.88	15.7
21.4	0.000	1.000	5.03	0.00161	4.15	1.38	2.39	8.65	17.2
23.6	0.000	1.000	4.57	0.00177	4.57	1.52	2.64	9.54	19.0
25.2	0.000	1.000	4.28	0.00189	4.88	1.63	2.82	10.2	20.3
28.8	0.000	1.000	3.74	0.00216	5.58	1.86	3.22	11.6	23.1
33.1	0.000	1.000	3.26	0.00248	6.41	2.14	3.70	13.4	26.6
39.6	0.000	1.000	2.72	0.00297	7.66	2.55	4.43	16.0	31.8
43.4	0.000	1.000	2.48	0.00326	8.41	2.80	4.86	17.5	34.9
47.8	0.000	1.000	2.25	0.00359	9.26	3.09	5.35	19.3	38.4
53.1	0.000	1.000	2.03	0.00398	10.3	3.43	5.94	21.5	42.7
59.9	0.000	1.000	1.80	0.00449	11.6	3.87	6.70	24.2	48.1
62.9	0.000	1.000	1.71	0.00472	12.2	4.06	7.04	25.4	50.6
70.6	0.000	1.000	1.53	0.00529	13.7	4.56	7.89	28.5	56.7
76.5	0.000	1.000	1.41	0.00574	14.8	4.94	8.56	30.9	61.5
85.4	0.000	1.000	1.26	0.00640	16.5	5.51	9.55	34.5	68.6
96.5	0.000	1.000	1.12	0.00723	18.7	6.23	10.8	39.0	77.6
107	0.000	1.000	1.01	0.00802	20.7	6.91	12.0	43.2	86.0
119	0.000	1.000	0.903	0.00895	23.1	7.71	13.4	48.1	95.6
134	0.000	1.000	0.807	0.0100	25.9	8.63	14.9	54.2	108
146	0.000	1.000	0.740	0.0109	28.2	9.41	16.3	59.0	117
161	0.000	1.000	0.668	0.0121	31.2	10.4	18.0	65.1	129
175	0.000	1.000	0.616	0.0131	33.9	11.3	19.6	70.7	141
194	0.000	1.000	0.555	0.0146	37.6	12.5	21.7	78.4	156
216	0.000	1.000	0.499	0.0162	41.8	13.9	24.1	87.3	174
239	0.000	1.000	0.450	0.0179	46.4	15.5	26.8	96.6	192
264	0.000	1.000	0.408	0.0198	51.2	17.1	29.6	107	212
293	0.000	1.000	0.368	0.0220	56.7	18.9	32.8	118	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

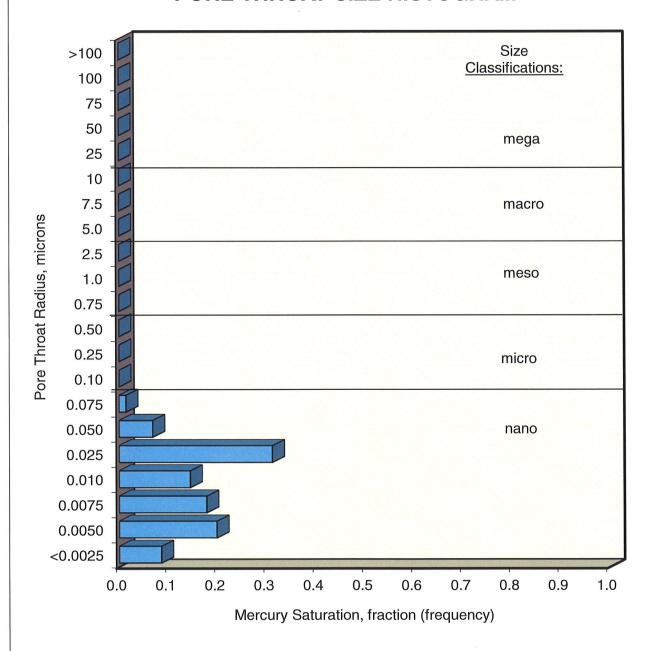
Sample:	S3 #118647-2	un-	Host	Plug
Depth, meters:	2100.60	stressed	n/a	n/a
Klinkenberg Perr	neability, md:	N/A	-	-
Permeability to A	N/A	-	-	
Swanson Perme	0.000899	-	-	
Porosity, fraction	:	0.054	-	-

maximum Sb/Pc, fraction: 0.00046 R35, microns: 0.0259 R50 (median pore throat radius): 0.0175

I	M	Pseudo-	Pore			Conversion		Estimate	
Injection	Mercury	Wetting	Throat			ther Labora		Above	
Pressure,	Saturation, fraction	Saturation, fraction	Radius,	J Values	G-W	d Systems, G-O	O-W	Water G-W	O-W
psia	Traction	Traction	microns	values	G-W	G-U	O-vv	G-W	O-W
325	0.000	1.000	0.332	0.0244	63.0	21.0	36.4	131	261
363	0.000	1.000	0.297	0.0272	70.4	23.5	40.6	147	292
399	0.000	1.000	0.270	0.0300	77.4	25.8	44.7	161	321
443	0.000	1.000	0.243	0.0332	85.8	28.6	49.5	179	356
491	0.000	1.000	0.219	0.0369	95.2	31.7	55.0	198	395
544	0.000	1.000	0.198	0.0408	106	35.2	60.9	220	437
603	0.000	1.000	0.179	0.0452	117	39.0	67.5	244	485
667	0.000	1.000	0.161	0.0501	129	43.1	74.7	270	536
739	0.004	0.996	0.146	0.0554	143	47.7	82.7	299	594
819	0.008	0.992	0.131	0.0615	159	52.9	91.7	331	658
908	0.012	0.988	0.119	0.0681	176	58.7	102	367	730
1010	0.018	0.982	0.107	0.0756	195	65.1	113	408	812
1110	0.024	0.976	0.0967	0.0835	216	71.9	125	449	892
1230	0.031	0.969	0.0872	0.0926	239	79.8	138	497	989
1370	0.039	0.961	0.0786	0.103	266	88.5	153	554	1100
1520	0.051	0.949	0.0709	0.114	294	98.1	170	614	1220
1680	0.066	0.934	0.0640	0.126	326	109	188	679	1350
1860	0.087	0.913	0.0578	0.140	361	120	208	752	1500
2060	0.111	0.889	0.0522	0.155	400	133	231	833	1660
2290	0.138	0.862	0.0471	0.172	443	148	256	925	1840
2530	0.167	0.833	0.0425	0.190	491	164	283	1020	2030
2810	0.200	0.800	0.0384	0.211	544	181	314	1140	2260
3120	0.236	0.764	0.0346	0.234	604	201	349	1260	2510
3450	0.275	0.725	0.0312	0.259	669	223	386	1390	2770
3820	0.316	0.684	0.0282	0.287	741	247	428	1540	3070
4240	0.357	0.643	0.0254	0.318	821	274	474	1710	3410
4690	0.395	0.605	0.0230	0.352	909	303	525	1900	3770
5200	0.435	0.565	0.0207	0.390	1010	336	582	2100	4180
5760	0.475	0.525	0.0187	0.432	1120	372	644	2330	4630
6380	0.512	0.488	0.0169	0.479	1240	412	714	2580	5130
7070	0.555	0.445	0.0152	0.530	1370	457	791	2860	5680
7840	0.595	0.405	0.0138	0.588	1520	506	877	3170	6300
8680	0.635	0.365	0.0124	0.651	1680	561	972	3510	6980
9620	0.672	0.328	0.0112	0.722	1860	622	1080	3890	7730

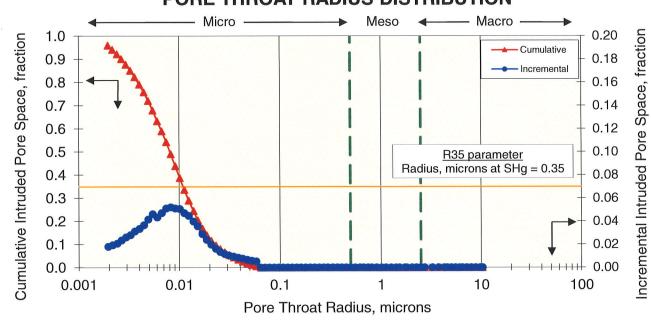
Company: University of North Dakota

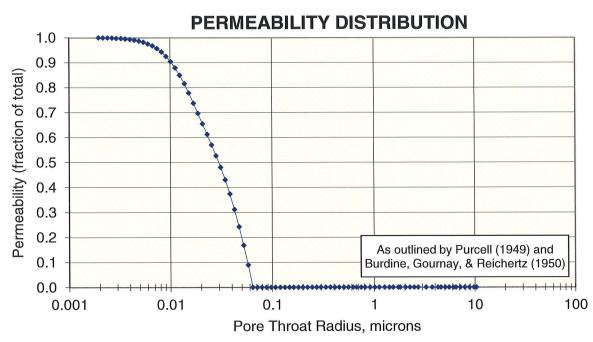
Well: Aquistore File: HOU-140757


Sample:	S3 #118647-2	un-	Host Plug		
Depth, meters:	2100.60	stressed	n/a	n/a	
Klinkenberg Perr	neability, md:	N/A	-	-	
Permeability to A	ir, md:	N/A	-	-	
Swanson Perme	ability, md:	0.000899	-	-	
Porosity, fraction	:	0.054	-	-	

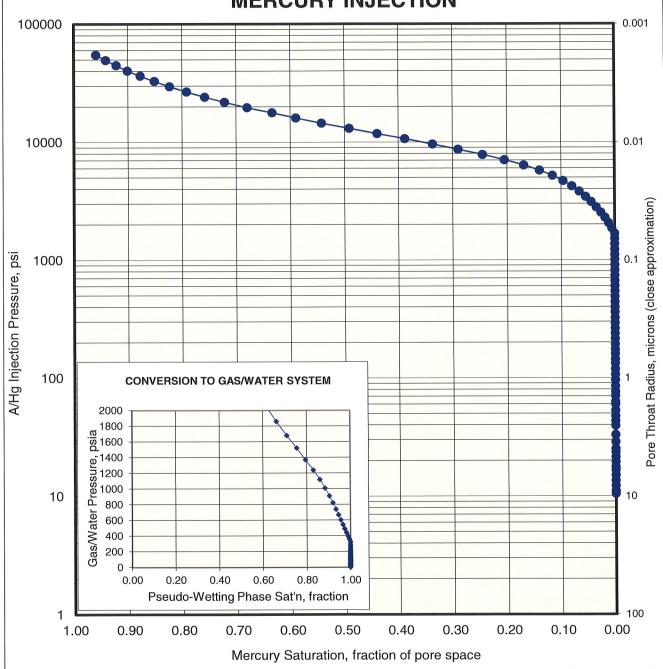
maximum Sb/Pc, fraction: 0.00046
R35, microns: 0.0259
R50 (median pore throat radius): 0.0175

Injection	Mercury	Pseudo- Wetting	Pore Throat		Conversion to other Laboratory			Estimated Heig Above Free	
Pressure,	Saturation,	Saturation,	Radius,	J	Fluid Systems, psia			Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10700	0.709	0.291	0.0101	0.800	2070	689	1190	4320	8600
11800	0.744	0.256	0.00912	0.886	2290	763	1320	4770	9480
13100	0.775	0.225	0.00823	0.982	2540	845	1460	5290	10500
14500	0.804	0.196	0.00743	1.09	2810	937	1620	5860	11700
16100	0.831	0.169	0.00671	1.21	3110	1040	1800	6510	12900
17800	0.856	0.144	0.00605	1.34	3450	1150	1990	7190	14300
19700	0.876	0.124	0.00546	1.48	3820	1270	2210	7960	15800
21900	0.895	0.105	0.00493	1.64	4240	1410	2450	8850	17600
24200	0.913	0.087	0.00445	1.82	4690	1560	2710	9780	19500
26800	0.929	0.071	0.00402	2.01	5200	1730	3000	10800	21500
29700	0.942	0.058	0.00362	2.23	5760	1920	3330	12000	23900
32900	0.953	0.047	0.00327	2.47	6380	2130	3680	13300	26400
36500	0.962	0.038	0.00295	2.74	7070	2360	4080	14800	29300
40400	0.971	0.029	0.00267	3.03	7830	2610	4520	16300	32500
44800	0.978	0.022	0.00241	3.36	8680	2890	5010	18100	36000
49600	0.984	0.016	0.00217	3.72	9620	3210	5550	20000	39900
55000	0.988	0.012	0.00196	4.12	10700	3550	6150	22200	44200


Company:	University of North Dakota	Sample: S2 #	118646-2m	un-	Host	Plug
Well:	Aquistore	Depth, meters:	2100.00	stressed	n/a	n/a
File:	HOU-140757 Klinkenberg Permeability, md:				-	-
		Permeability to Air,	N/A	-	-	
		Swanson Permeabil	0.000263	-	-	
		Porosity, fraction:		0.059	-	-
		maximum Sb/Pc, fra	action:	0.00022		
		R35, microns:		0.0109		
		R50 (median pore throa	at radius):	0.00809		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample:	S2 #118646-2m	un-	Host	Plug
Well:	Aquistore	Depth, meters:	2100.00	stressed	n/a	n/a
File: I	HOU-140757	N/A	-	-		
		Permeability to	N/A	-		
		Swanson Perm	0.000263	-	-	
		Porosity, fraction	0.059	-	-	
		maximum Sb/P	c, fraction:	0.00022		
		R35, microns:		0.0109		
		R50 (median pore	R50 (median pore throat radius):			


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample: S2 #118646-2m		un-	Host Plug	
Well:	Aquistore	Depth, meters	: 2100.00	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:				-
		Permeability 1	N/A	-	-	
		Swanson Per	0.000263	-	-	
		Porosity, frac	0.059	-	-	
		maximum Sb	0.00022			
		R35, microns		0.0109		
		R50 (median po	ore throat radius):	0.00809		

MERCURY INJECTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S2 #118646-2m	un-	Host	Plug
Depth, meters:	2100.00	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	-
Permeability to	Air, md:	N/A	-	
Swanson Perm	neability, md:	0.000263	-	-
Porosity, fraction	on:	0.059	-	-

maximum Sb/Pc, fraction: 0.00022 R35, microns: 0.0109 R50 (median pore throat radius): 0.00809

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	Conversion to other Laboratory Fluid Systems, psia			Above	d Height Free r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10.5	0.000	4 000	10.0	0.000400	0.00	0.070	4 47	4.04	0.44
10.5	0.000	1.000	10.3	0.000409	2.03	0.678	1.17	4.24	8.44
11.1	0.000	1.000	9.74	0.000431	2.14	0.714	1.24	4.49	8.92
12.3	0.000	1.000	8.79	0.000477	2.38	0.792	1.37	4.97	9.89
13.6	0.000	1.000	7.93	0.000529	2.63	0.878	1.52	5.50	10.9
15.1	0.000	1.000	7.16	0.000586	2.92	0.972	1.68	6.10	12.1
16.7	0.000	1.000	6.47	0.000649	3.23	1.08	1.86	6.75	13.4
17.7	0.000	1.000	6.09	0.000689	3.43	1.14	1.98	7.15	14.2
19.5	0.000	1.000	5.53	0.000759	3.78	1.26	2.18	7.88	15.7
21.4	0.000	1.000	5.03	0.000833	4.15	1.38	2.39	8.65	17.2
23.6	0.000	1.000	4.57	0.000919	4.57	1.52	2.64	9.54	19.0
25.2	0.000	1.000	4.28	0.000981	4.88	1.63	2.82	10.2	20.3
28.8	0.000	1.000	3.74	0.00112	5.58	1.86	3.22	11.6	23.1
33.1	0.000	1.000	3.26	0.00129	6.41	2.14	3.70	13.4	26.6
39.6	0.000	1.000	2.72	0.00154	7.66	2.55	4.43	16.0	31.8
43.4	0.000	1.000	2.48	0.00169	8.41	2.80	4.86	17.5	34.9
47.8	0.000	1.000	2.25	0.00186	9.26	3.09	5.35	19.3	38.4
53.1	0.000	1.000	2.03	0.00207	10.3	3.43	5.94	21.5	42.7
59.9	0.000	1.000	1.80	0.00233	11.6	3.87	6.70	24.2	48.1
62.8	0.000	1.000	1.72	0.00245	12.2	4.06	7.03	25.4	50.5
70.4	0.000	1.000	1.53	0.00274	13.6	4.55	7.88	28.5	56.6
76.4	0.000	1.000	1.41	0.00298	14.8	4.93	8.55	30.9	61.4
85.2	0.000	1.000	1.26	0.00332	16.5	5.50	9.53	34.4	68.5
96.3	0.000	1.000	1.12	0.00375	18.7	6.22	10.8	38.9	77.4
107	0.000	1.000	1.01	0.00416	20.7	6.90	11.9	43.2	86.0
119	0.000	1.000	0.904	0.00464	23.1	7.70	13.3	48.1	95.6
133	0.000	1.000	0.808	0.00520	25.9	8.62	14.9	53.8	107
145	0.000	1.000	0.741	0.00567	28.2	9.40	16.3	58.6	117
161	0.000	1.000	0.669	0.00627	31.2	10.4	18.0	65.1	129
175	0.000	1.000	0.617	0.00680	33.9	11.3	19.5	70.7	141
194	0.000	1.000	0.555	0.00756	37.6	12.5	21.7	78.4	156
215	0.000	1.000	0.500	0.00839	41.8	13.9	24.1	86.9	173
239	0.000	1.000	0.451	0.00931	46.3	15.4	26.7	96.6	192
264	0.000	1.000	0.408	0.0103	51.2	17.1	29.5	107	212
293	0.000	1.000	0.368	0.0114	56.7	18.9	32.7	118	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S2 #118646-2m	un-	Host	Plug
Depth, meters:	2100.00	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	-
Permeability to	Air, md:	N/A	*	-
Swanson Perm	eability, md:	0.000263	-	-
Porosity, fraction	on:	0.059	-	-

maximum Sb/Pc, fraction: 0.00022
R35, microns: 0.0109
R50 (median pore throat radius): 0.00809

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	Conversion to other Laboratory Fluid Systems, psia			Above Wate	ated Height ove Free ater, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W	
325	0.000	1.000	0.332	0.0126	62.9	21.0	36.3	131	261	
363	0.000	1.000	0.297	0.0141	70.3	23.4	40.6	147	292	
399	0.000	1.000	0.270	0.0155	77.3	25.8	44.7	161	321	
442	0.000	1.000	0.244	0.0172	85.7	28.6	49.5	179	355	
491	0.000	1.000	0.219	0.0191	95.2	31.7	55.0	198	395	
544	0.000	1.000	0.198	0.0212	105	35.2	60.9	220	437	
603	0.000	1.000	0.179	0.0235	117	38.9	67.4	244	485	
667	0.000	1.000	0.161	0.0260	129	43.1	74.6	270	536	
739	0.000	1.000	0.146	0.0288	143	47.7	82.7	299	594	
819	0.000	1.000	0.132	0.0319	159	52.9	91.6	331	658	
908	0.000	1.000	0.119	0.0354	176	58.7	102	367	730	
1010	0.000	1.000	0.107	0.0392	195	65.1	113	408	812	
1110	0.000	1.000	0.0968	0.0434	216	71.9	125	449	892	
1230	0.000	1.000	0.0873	0.0481	239	79.8	138	497	989	
1370	0.000	1.000	0.0786	0.0534	266	88.5	153	554	1100	
1520	0.000	1.000	0.0710	0.0591	294	98.1	170	614	1220	
1680	0.000	1.000	0.0641	0.0655	326	109	188	679	1350	
1860	0.005	0.995	0.0579	0.0725	361	120	208	752	1500	
2060	0.011	0.989	0.0522	0.0804	400	133	231	833	1660	
2290	0.018	0.982	0.0471	0.0891	443	148	256	925	1840	
2530	0.026	0.974	0.0425	0.0987	491	164	283	1020	2030	
2810	0.034	0.966	0.0384	0.109	544	181	314	1140	2260	
3120	0.044	0.956	0.0346	0.121	604	201	349	1260	2510	
3450	0.054	0.946	0.0312	0.134	669	223	386	1390	2770	
3820	0.066	0.934	0.0282	0.149	741	247	428	1540	3070	
4240	0.080	0.920	0.0254	0.165	821	274	474	1710	3410	
4690	0.096	0.904	0.0230	0.183	909	303	525	1900	3770	
5200	0.116	0.884	0.0207	0.202	1010	336	582	2100	4180	
5760	0.140	0.860	0.0187	0.224	1120	372	644	2330	4630	
6380	0.169	0.831	0.0169	0.249	1240	412	714	2580	5130	
7070	0.205	0.795	0.0152	0.275	1370	457	791	2860	5680	
7840	0.245	0.755	0.0138	0.305	1520	506	877	3170	6300	
8680	0.290	0.710	0.0124	0.338	1680	561	971	3510	6980	
9620	0.337	0.663	0.0112	0.375	1860	621	1080	3890	7730	

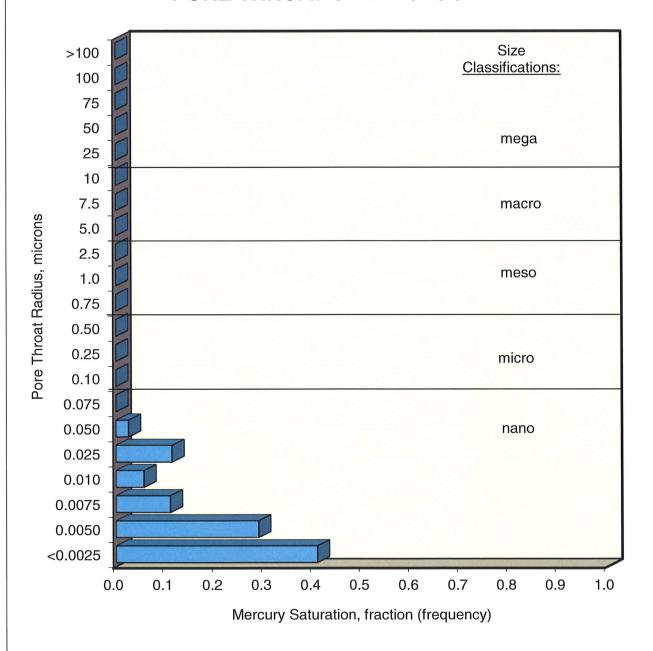
Company: University of North Dakota

Well:

Aquistore

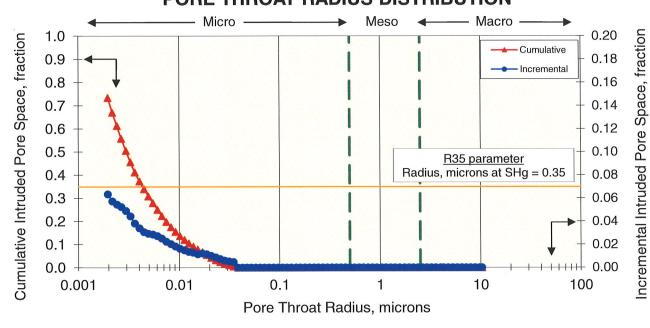
File:

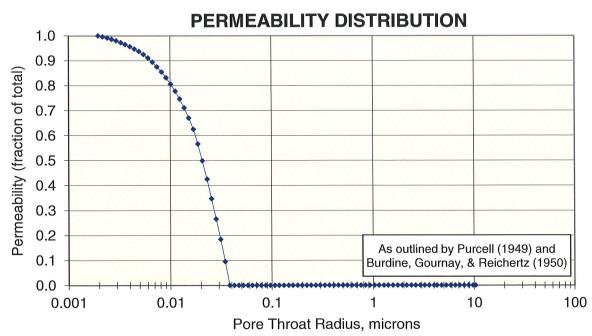
HOU-140757


Sample:	S2 #118646-2m	un-	Host Plug		
Depth, meters:	2100.00	stressed	n/a	n/a	
Klinkenberg Pe	ermeability, md:	N/A	-	-	
Permeability to	Air, md:	N/A	-	-	
Swanson Perm	neability, md:	0.000263	-	-	
Porosity, fraction	on:	0.059	-	-	

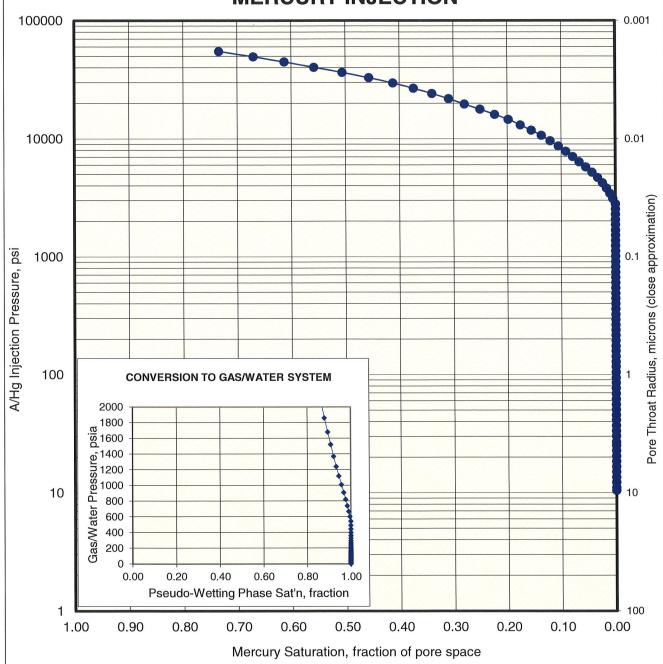
maximum Sb/Pc, fraction:0.00022R35, microns:0.0109R50 (median pore throat radius):0.00809

		Pseudo-	Pore		Conversion			Estimate	d Height
Injection	Mercury	Wetting	Throat		to o	ther Labora	atory	Above	Free
Pressure,	Saturation,	Saturation,	Radius,	J	Fluid Systems, psia			Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10700	0.388	0.612	0.0101	0.415	2070	689	1190	4320	8600
11800	0.439	0.561	0.00912	0.460	2290	763	1320	4770	9480
13100	0.491	0.509	0.00823	0.510	2540	845	1460	5290	10500
14500	0.543	0.457	0.00743	0.565	2810	937	1620	5860	11700
16100	0.590	0.410	0.00671	0.626	3110	1040	1800	6510	12900
17800	0.633	0.367	0.00605	0.693	3450	1150	1990	7190	14300
19700	0.680	0.320	0.00546	0.768	3820	1270	2210	7960	15800
21900	0.721	0.279	0.00493	0.851	4230	1410	2440	8850	17600
24200	0.758	0.242	0.00445	0.943	4690	1560	2710	9780	19500
26800	0.792	0.208	0.00402	1.04	5200	1730	3000	10800	21500
29700	0.823	0.177	0.00362	1.16	5760	1920	3330	12000	23900
32900	0.851	0.149	0.00327	1.28	6380	2130	3680	13300	26400
36500	0.877	0.123	0.00295	1.42	7070	2360	4080	14800	29300
40400	0.901	0.099	0.00267	1.57	7830	2610	4520	16300	32500
44800	0.922	0.078	0.00241	1.74	8680	2890	5010	18100	36000
49600	0.941	0.059	0.00217	1.93	9620	3210	5550	20000	39900
55000	0.959	0.041	0.00196	2.14	10700	3550	6150	22200	44200


Company:	University of North Dakota	Sample:	S1 #1186	45-2m	un-	Host	Plug
Well:	Aquistore	Depth, meter	rs: 20	098.50	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Permeability	, md:	N/A	-	-
		Permeability	to Air, md:		N/A	-	-
		Swanson Permeability, md:			0.000020	-	-
		Porosity, fra	ction:		0.034	-	-
		maximum S	b/Pc, fraction	า:	0.00005		
		R35, micron	is:		0.00432		
		R50 (median	pore throat radi	us):	0.00299		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample:	S1 #118	645-2m	un-	Host	Plug
Well:	Aquistore	Depth, meter	s:	2098.50	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Permeabili	ty, md:	N/A	-	-
		Permeability	to Air, md	:	N/A	-	-
		Swanson Permeability, md:			0.000020	-	-
		Porosity, fra	ction:		0.034	-	-
		maximum S	b/Pc, fracti	on:	0.00005		
		R35, micron	s:		0.00432		
		R50 (median)	oore throat ra	dius):	0.00299		


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample:	S1 #118	8645-2m	un-	Host	Plug
Well:	Aquistore	Depth, meters:		2098.50	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Pe	rmeabili	ty, md:	N/A	-	-
		Permeability to	Air, md		N/A	-	-
		Swanson Permeability, md:			0.000020	-	-
		Porosity, fraction	on:		0.034	-	-
		maximum Sb/F	c, fracti	on:	0.00005		
		R35, microns:			0.00432		
		R50 (median pore	e throat ra	adius):	0.00299		

MERCURY INJECTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S1 #118645-2m	un-	Host	Plug
Depth, meters:	2098.50	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	-
Permeability to	Air, md:	N/A	=	-
Swanson Pern	neability, md:	0.000020	-	-
Porosity, fracti	on:	0.034	-	-

maximum Sb/Pc, fraction: 0.00005 R35, microns: 0.00432 R50 (median pore throat radius): 0.00299

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J		Conversion other Labora id Systems,	tory	Estimate Above Wate	Free
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
leasanne ar an leasann an						<u> </u>			
10.5	0.000	1.000	10.3	0.000149	2.03	0.678	1.17	4.24	8.44
11.1	0.000	1.000	9.74	0.000157	2.14	0.714	1.24	4.49	8.92
12.3	0.000	1.000	8.79	0.000174	2.38	0.792	1.37	4.97	9.89
13.6	0.000	1.000	7.93	0.000193	2.63	0.877	1.52	5.50	10.9
15.1	0.000	1.000	7.16	0.000213	2.92	0.972	1.68	6.10	12.1
16.7	0.000	1.000	6.47	0.000236	3.23	1.08	1.86	6.75	13.4
18.5	0.000	1.000	5.84	0.000262	3.58	1.19	2.07	7.48	14.9
20.5	0.000	1.000	5.27	0.000290	3.96	1.32	2.29	8.28	16.5
22.8	0.000	1.000	4.74	0.000323	4.41	1.47	2.55	9.21	18.3
25.2	0.000	1.000	4.28	0.000357	4.88	1.63	2.82	10.2	20.3
27.0	0.000	1.000	3.99	0.000383	5.24	1.75	3.02	10.9	21.7
30.3	0.000	1.000	3.56	0.000429	5.86	1.95	3.38	12.2	24.4
33.5	0.000	1.000	3.21	0.000475	6.50	2.17	3.75	13.5	26.9
37.1	0.000	1.000	2.90	0.000527	7.20	2.40	4.16	15.0	29.8
41.4	0.000	1.000	2.61	0.000586	8.02	2.67	4.63	16.7	33.3
45.6	0.000	1.000	2.37	0.000646	8.83	2.94	5.10	18.4	36.7
50.7	0.000	1.000	2.13	0.000718	9.82	3.27	5.67	20.5	40.8
56.0	0.000	1.000	1.93	0.000794	10.8	3.62	6.26	22.6	45.0
62.0	0.000	1.000	1.74	0.000879	12.0	4.01	6.94	25.1	49.8
69.1	0.000	1.000	1.56	0.000980	13.4	4.46	7.73	27.9	55.5
76.9	0.000	1.000	1.40	0.00109	14.9	4.97	8.60	31.1	61.8
85.2	0.000	1.000	1.27	0.00121	16.5	5.50	9.53	34.4	68.5
94.3	0.000	1.000	1.14	0.00134	18.3	6.09	10.6	38.1	75.8
105	0.000	1.000	1.03	0.00149	20.3	6.77	11.7	42.4	84.4
117	0.000	1.000	0.922	0.00166	22.6	7.55	13.1	47.3	94.0
129	0.000	1.000	0.835	0.00183	25.0	8.33	14.4	52.1	104
143	0.000	1.000	0.754	0.00203	27.7	9.23	16.0	57.8	115
159	0.000	1.000	0.679	0.00225	30.8	10.3	17.8	64.3	128
175	0.000	1.000	0.615	0.00248	33.9	11.3	19.6	70.7	141
195	0.000	1.000	0.553	0.00276	37.7	12.6	21.8	78.8	157
216	0.000	1.000	0.500	0.00306	41.8	13.9	24.1	87.3	174
239	0.000	1.000	0.450	0.00339	46.4	15.5	26.8	96.6	192
265	0.000	1.000	0.406	0.00376	51.4	17.1	29.7	107	213
294	0.000	1.000	0.367	0.00417	57.0	19.0	32.9	119	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

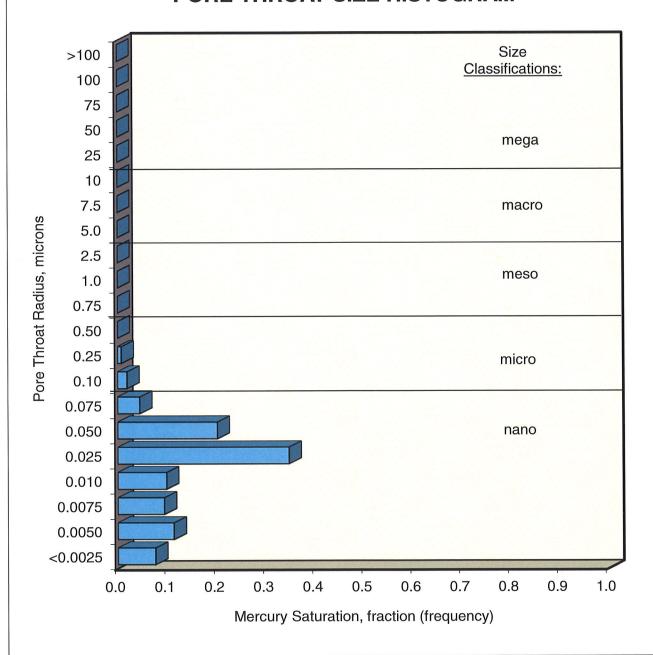
Sample:	S1 #118645-2m	un-	Host	Plug
Depth, meters:	2098.50	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	-
Permeability to Air, md:		N/A	-	-
Swanson Perm	neability, md:	0.000020	-	-
Porosity, fraction	on:	0.034	-	-

maximum Sb/Pc, fraction: 0.00005 R35, microns: 0.00432 R50 (median pore throat radius): 0.00299

Injection Pressure,	Mercury Saturation,			J	to o	Conversion ther Labora d Systems,	atory psia	Estimate Above Wate	Free
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
325	0.000	1.000	0.332	0.00461	63.0	21.0	36.4	131	261
361	0.000	1.000	0.298	0.00512	70.0	23.3	40.4	146	290
400	0.000	1.000	0.270	0.00567	77.4	25.8	44.7	162	322
443	0.000	1.000	0.243	0.00627	85.8	28.6	49.5	179	356
490	0.000	1.000	0.220	0.00695	95.0	31.7	54.9	198	394
544	0.000	1.000	0.198	0.00771	105	35.1	60.8	220	437
603	0.000	1.000	0.179	0.00855	117	38.9	67.4	244	485
669	0.000	1.000	0.161	0.00948	130	43.2	74.8	270	538
740	0.000	1.000	0.146	0.0105	143	47.8	82.8	299	595
821	0.000	1.000	0.131	0.0116	159	53.0	91.8	332	660
909	0.000	1.000	0.118	0.0129	176	58.7	102	367	731
1010	0.000	1.000	0.107	0.0143	195	65.1	113	408	812
1120	0.000	1.000	0.0965	0.0158	216	72.1	125	453	900
1240	0.000	1.000	0.0871	0.0175	240	79.9	138	501	997
1370	0.000	1.000	0.0786	0.0194	266	88.5	153	554	1100
1520	0.000	1.000	0.0709	0.0215	294	98.1	170	614	1220
1680	0.000	1.000	0.0640	0.0239	326	109	188	679	1350
1870	0.000	1.000	0.0578	0.0264	361	120	209	756	1500
2070	0.000	1.000	0.0521	0.0293	400	133	231	837	1660
2290	0.000	1.000	0.0471	0.0325	444	148	256	925	1840
2540	0.000	1.000	0.0425	0.0360	492	164	284	1030	2040
2810	0.000	1.000	0.0383	0.0399	545	182	315	1140	2260
3110	0.005	0.995	0.0346	0.0442	604	201	349	1260	2500
3450	0.010	0.990	0.0312	0.0489	669	223	386	1390	2770
3820	0.016	0.984	0.0282	0.0542	741	247	428	1540	3070
4240	0.024	0.976	0.0254	0.0601	821	274	474	1710	3410
4690	0.033	0.967	0.0230	0.0665	909	303	525	1900	3770
5200	0.043	0.957	0.0207	0.0737	1010	336	582	2100	4180
5760	0.055	0.945	0.0187	0.0817	1120	372	645	2330	4630
6380	0.067	0.933	0.0169	0.0905	1240	412	714	2580	5130
7070	0.079	0.921	0.0152	0.100	1370	457	791	2860	5680
7840	0.092	0.908	0.0137	0.111	1520	506	877	3170	6300
8680	0.105	0.895	0.0124	0.123	1680	561	972	3510	6980
9620	0.120	0.880	0.0112	0.136	1860	622	1080	3890	7730

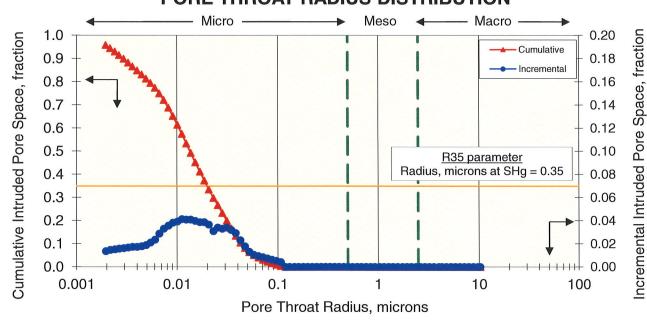
Company: University of North Dakota

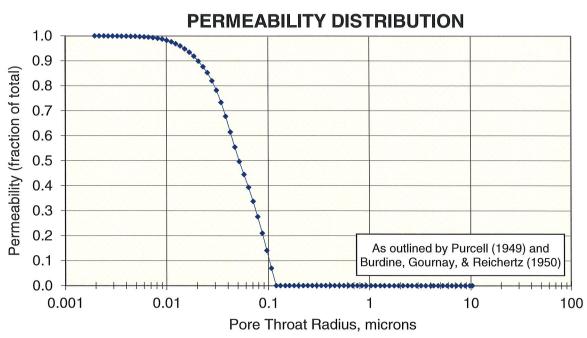
Well: Aquistore File: HOU-140757


Sample:	S1 #118645-2m	un-	Host	Plug
Depth, meters:	2098.50	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A		-
Permeability to Air, md:		N/A	-	-
Swanson Pern	neability, md:	0.000020	-	-
Porosity, fracti	on:	0.034	-	-

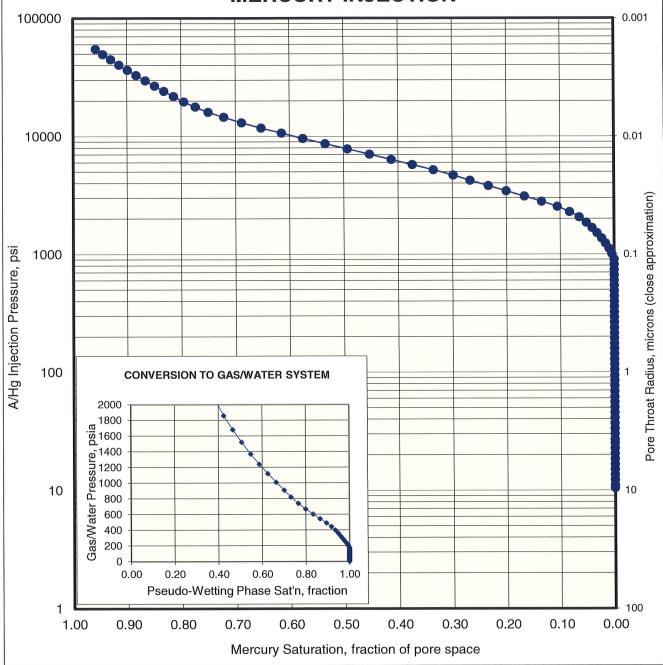
maximum Sb/Pc, fraction:0.00005R35, microns:0.00432R50 (median pore throat radius):0.00299

Injection	Mercury	Pseudo- Wetting	Pore Throat			Conversior other Labora	atory	Above	
Pressure,	Saturation,	Saturation,	Radius,	J	Flui	d Systems,	psia	Wate	r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10700	0.137	0.863	0.0101	0.151	2070	689	1190	4320	8600
11800	0.155	0.845	0.00912	0.167	2290	763	1320	4770	9480
13100	0.176	0.824	0.00823	0.186	2540	845	1460	5290	10500
14600	0.198	0.802	0.00739	0.207	2820	941	1630	5900	11700
16100	0.223	0.777	0.00667	0.229	3130	1040	1810	6510	12900
17800	0.251	0.749	0.00605	0.252	3450	1150	1990	7190	14300
19700	0.279	0.721	0.00546	0.280	3820	1270	2210	7960	15800
21900	0.309	0.691	0.00493	0.310	4240	1410	2450	8850	17600
24200	0.340	0.660	0.00445	0.343	4690	1560	2710	9780	19500
26800	0.374	0.626	0.00402	0.380	5200	1730	3000	10800	21500
29700	0.412	0.588	0.00362	0.422	5760	1920	3330	12000	23900
32900	0.456	0.544	0.00327	0.467	6380	2130	3690	13300	26400
36500	0.506	0.494	0.00295	0.517	7070	2360	4080	14800	29300
40400	0.558	0.442	0.00266	0.573	7840	2610	4520	16300	32500
44800	0.613	0.387	0.00241	0.635	8680	2890	5010	18100	36000
49600	0.670	0.330	0.00217	0.704	9620	3210	5550	20000	39900
55000	0.734	0.266	0.00196	0.780	10700	3550	6150	22200	44200


Company:	University of North Dakota	Sample:	S11 #118	657m	un-	Host	Plug
Well:	Aquistore	Depth, mete	rs: 20	96.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Permeability	, md:	N/A	-	-
		Permeability	to Air, md:		N/A	-	-
		Swanson Permeability, md:			0.000599	-	-
		Porosity, fra	ction:		0.055	-	-
		maximum S	b/Pc, fraction	1:	0.00036		
		R35, micror	is:		0.0199		
		R50 (median	pore throat radi	us):	0.0135		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample:	S11 #	118657m	un-	Host	Plug
Well:	Aquistore	Depth, meter	s:	2096.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Permeabi	lity, md:	N/A	-	-
		Permeability	to Air, m	d:	N/A	-	-
		Swanson Pe	rmeability	, md:	0.000599	-	-
		Porosity, fraction:			0.055	-	-
		maximum S	b/Pc, frac	tion:	0.00036		
		R35, micron	s:		0.0199		
		R50 (median)	ore throat i	adius):	0.0135		


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample:	S11 #11	8657m	un-	Host	Plug
Well:	Aquistore	Depth, meter	s: 2	2096.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Permeabilit	y, md:	N/A	-	-
		Permeability	to Air, md:		N/A	-	-
		Swanson Permeability, md:			0.000599	-	-
		Porosity, fraction:			0.055	-	-
		maximum S	b/Pc, fraction	on:	0.00036		
		R35, micron	s:		0.0199		
		R50 (median pore throat radius):			0.0135		

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S11 #118657m	un-	Host	Plug
Depth, meters:	2096.10	stressed	n/a	n/a
Klinkenberg Pe	N/A	-	-	
Permeability to	N/A	-	-	
Swanson Perm	0.000599	-	-	
Porosity, fraction	n:	0.055	-	Ψ.

maximum Sb/Pc, fraction: 0.00036 R35, microns: 0.0199 R50 (median pore throat radius): 0.0135

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	Throat to other Laboratory		to other Laboratory Fluid Systems, psia		Above	ed Height e Free r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10.5	0.000	1.000	10.3	0.000636	2.03	0.678	4 47	4.24	8.44
11.1	0.000	1.000	9.74			0.678	1.17 1.24		
12.3	0.000	1.000		0.000670 0.000743	2.14			4.49	8.92
12.3	0.000	1.000	8.79 7.93		2.38	0.792	1.37	4.97	9.89
15.1	0.000	1.000	7.93 7.16	0.000823 0.000912	2.63 2.92	0.877 0.972	1.52 1.68	5.50 6.10	10.9 12.1
16.7			6.47						
	0.000	1.000		0.00101	3.23	1.08	1.86	6.75	13.4
18.5	0.000	1.000	5.84	0.00112	3.58	1.19	2.07	7.48	14.9
20.5	0.000	1.000	5.27	0.00124	3.96	1.32	2.29	8.28	16.5
22.8	0.000	1.000	4.74	0.00138	4.41	1.47	2.55	9.21	18.3
25.2	0.000	1.000	4.28	0.00153	4.88	1.63	2.82	10.2	20.3
27.0	0.000	1.000	4.00	0.00163	5.22	1.74	3.02	10.9	21.7
30.2	0.000	1.000	3.57	0.00183	5.85	1.95	3.38	12.2	24.3
33.5	0.000	1.000	3.22	0.00203	6.48	2.16	3.74	13.5	26.9
37.1	0.000	1.000	2.91	0.00225	7.19	2.40	4.15	15.0	29.8
41.3	0.000	1.000	2.61	0.00250	8.00	2.67	4.62	16.7	33.2
45.5	0.000	1.000	2.37	0.00276	8.81	2.94	5.09	18.4	36.6
50.6	0.000	1.000	2.13	0.00306	9.80	3.27	5.66	20.4	40.7
55.9	0.000	1.000	1.93	0.00339	10.8	3.61	6.25	22.6	44.9
61.9	0.000	1.000	1.74	0.00375	12.0	4.00	6.93	25.0	49.8
69.0	0.000	1.000	1.56	0.00418	13.4	4.46	7.72	27.9	55.5
76.8	0.000	1.000	1.40	0.00465	14.9	4.96	8.59	31.0	61.7
85.1	0.000	1.000	1.27	0.00515	16.5	5.49	9.52	34.4	68.4
94.2	0.000	1.000	1.14	0.00571	18.3	6.08	10.5	38.1	75.7
105	0.000	1.000	1.03	0.00635	20.3	6.77	11.7	42.4	84.4
117	0.000	1.000	0.923	0.00707	22.6	7.54	13.1	47.3	94.0
129	0.000	1.000	0.836	0.00781	25.0	8.32	14.4	52.1	104
143	0.000	1.000	0.755	0.00865	27.7	9.22	16.0	57.8	115
159	0.000	1.000	0.679	0.00961	30.7	10.2	17.7	64.3	128
175	0.000	1.000	0.616	0.0106	33.9	11.3	19.6	70.7	141
195	0.000	1.000	0.554	0.0118	37.7	12.6	21.8	78.8	157
215	0.000	1.000	0.500	0.0131	41.7	13.9	24.1	86.9	173
239	0.000	1.000	0.451	0.0145	46.3	15.4	26.7	96.6	192
265	0.000	1.000	0.406	0.0161	51.4	17.1	29.7	107	213
294	0.000	1.000	0.367	0.0178	56.9	19.0	32.9	119	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S11 #118657m	un-	Host Plug	
Depth, meters:	2096.10	stressed	n/a	n/a
Klinkenberg Per	N/A	•	-	
Permeability to	N/A	-	-	
Swanson Perme	0.000599	-	-	
Porosity, fractio	n:	0.055	-	-

maximum Sb/Pc, fraction:0.00036R35, microns:0.0199R50 (median pore throat radius):0.0135

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	to o Flui	Conversior other Labora d Systems,	atory psia	Estimate Above Wate	e Free r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
325	0.000	1.000	0.332	0.0197	62.9	21.0	36.3	131	261
361	0.000	1.000	0.299	0.0219	69.9	23.3	40.4	146	290
399	0.000	1.000	0.270	0.0242	77.4	25.8	44.7	161	321
442	0.000	1.000	0.244	0.0268	85.7	28.6	49.5	179	355
490	0.000	1.000	0.220	0.0297	95.0	31.7	54.8	198	394
544	0.000	1.000	0.198	0.0329	105	35.1	60.8	220	437
603	0.000	1.000	0.179	0.0365	117	38.9	67.4	244	485
669	0.000	1.000	0.161	0.0405	130	43.2	74.8	270	538
740	0.000	1.000	0.146	0.0448	143	47.8	82.8	299	595
821	0.000	1.000	0.131	0.0497	159	53.0	91.8	332	660
909	0.000	1.000	0.119	0.0551	176	58.7	102	367	731
1010	0.004	0.996	0.107	0.0610	195	65.1	113	408	812
1120	0.009	0.991	0.0965	0.0676	216	72.1	125	453	900
1240	0.016	0.984	0.0871	0.0749	240	79.9	138	501	997
1370	0.023	0.977	0.0786	0.0830	266	88.5	153	554	1100
1520	0.031	0.969	0.0709	0.0920	294	98.1	170	614	1220
1680	0.041	0.959	0.0640	0.102	326	109	188	679	1350
1860	0.051	0.949	0.0578	0.113	361	120	209	752	1500
2070	0.064	0.936	0.0521	0.125	400	133	231	837	1660
2290	0.082	0.918	0.0471	0.139	444	148	256	925	1840
2540	0.105	0.895	0.0425	0.154	492	164	284	1030	2040
2810	0.135	0.865	0.0383	0.170	545	182	314	1140	2260
3110	0.167	0.834	0.0346	0.189	604	201	348	1260	2500
3450	0.201	0.799	0.0312	0.209	669	223	386	1390	2770
3820	0.234	0.766	0.0282	0.232	741	247	428	1540	3070
4240	0.268	0.732	0.0254	0.257	821	274	474	1710	3410
4690	0.298	0.702	0.0230	0.284	909	303	525	1900	3770
5200	0.335	0.665	0.0207	0.315	1010	336	582	2100	4180
5760	0.374	0.626	0.0187	0.349	1120	372	644	2330	4630
6380	0.413	0.587	0.0169	0.387	1240	412	714	2580	5130
7070	0.452	0.548	0.0152	0.429	1370	457	791	2860	5680
7840	0.493	0.507	0.0137	0.475	1520	506	877	3170	6300
8680	0.534	0.466	0.0124	0.526	1680	561	972	3510	6980
9620	0.575	0.425	0.0112	0.583	1860	621	1080	3890	7730

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S11 #118657m	un-	Host	Plug
Depth, meters:	2096.10	stressed	n/a	n/a
Klinkenberg Pe	rmeability, md:	N/A		-
Permeability to	N/A	-	-	
Swanson Perm	0.000599	-	-	
Porosity, fractic	n:	0.055	-	-

maximum Sb/Pc, fraction: 0.00036 R35, microns: 0.0199 R50 (median pore throat radius): 0.0135

Injection	Mercury	Pseudo- Wetting	Pore Throat		Conversion to other Laboratory			Estimated Height Above Free	
Pressure,	Saturation,	Saturation,	Radius,	J	Fluid Systems, psia			Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10700	0.615	0.385	0.0101	0.646	2070	688	1190	4320	8600
11800	0.653	0.347	0.00912	0.716	2290	763	1320	4770	9480
13100	0.689	0.311	0.00823	0.793	2540	845	1460	5290	10500
14600	0.722	0.279	0.00739	0.883	2820	941	1630	5900	11700
16100	0.750	0.250	0.00667	0.978	3130	1040	1810	6510	12900
17800	0.774	0.226	0.00605	1.08	3450	1150	1990	7190	14300
19700	0.795	0.205	0.00546	1.20	3820	1270	2210	7960	15800
21900	0.814	0.186	0.00493	1.32	4240	1410	2450	8850	17600
24200	0.831	0.169	0.00445	1.47	4690	1560	2710	9780	19500
26800	0.849	0.151	0.00402	1.63	5200	1730	3000	10800	21500
29700	0.866	0.134	0.00362	1.80	5760	1920	3330	12000	23900
32900	0.883	0.117	0.00327	2.00	6380	2130	3690	13300	26400
36500	0.899	0.101	0.00295	2.21	7070	2360	4080	14800	29300
40400	0.915	0.085	0.00266	2.45	7840	2610	4520	16300	32500
44800	0.930	0.070	0.00241	2.71	8680	2890	5010	18100	36000
49600	0.945	0.055	0.00217	3.01	9620	3210	5550	20000	39900
55000	0.958	0.042	0.00196	3.33	10700	3550	6150	22200	44200

ADVANCED CORE ANALYSIS STUDY

University of North Dakota Aquistore

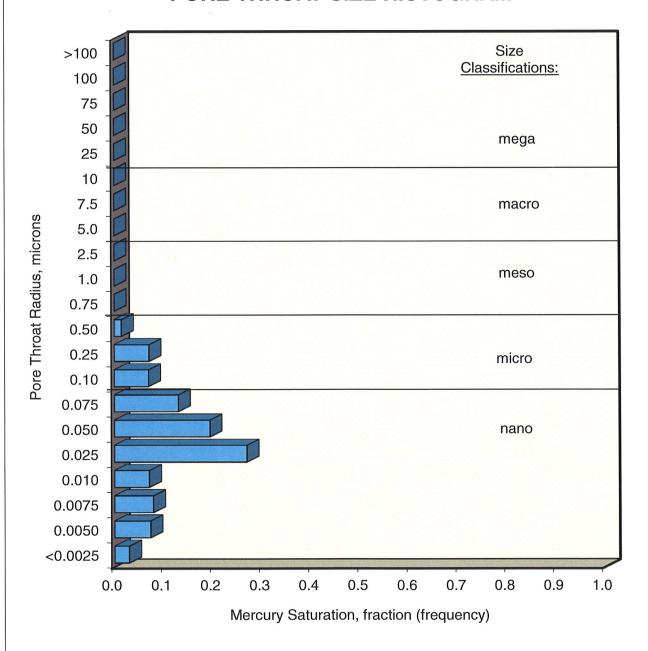
INTERIM DATA

Submitted to:

University of North Dakota

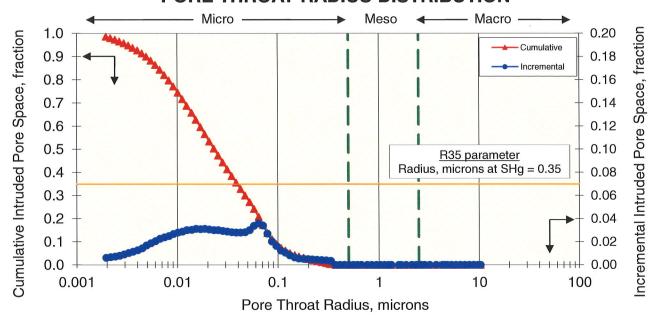
August 18, 2014

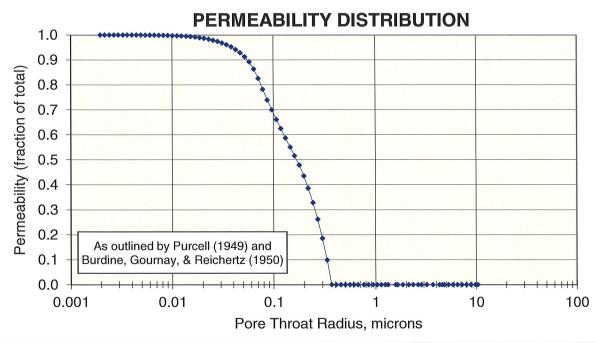
Performed by:


Core Laboratories
Petroleum Services Division
6316 Windfern
Houston, Texas 77040

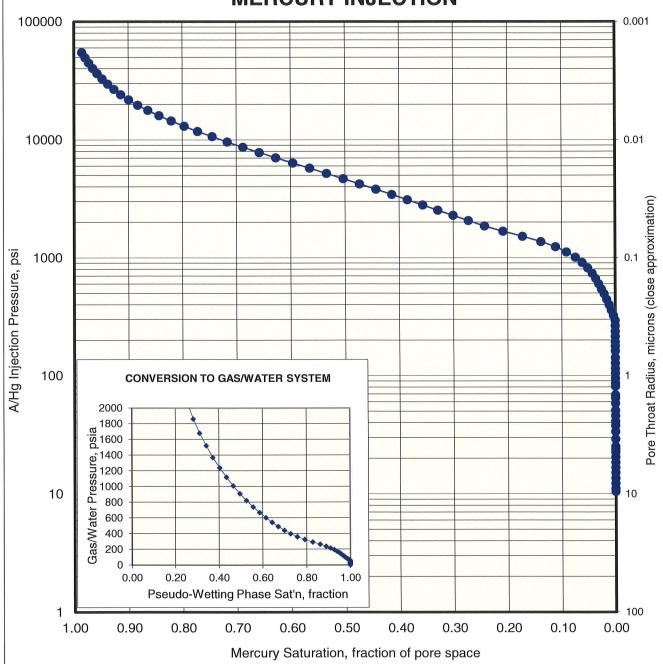
HOU-140757

The analytical results, opinions, or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions, or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations, or profitableness of any oil, gas, coal, or other mineral, property, well, or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.


Company:	University of North Dakota	Sample: S9 #118655m		un-	Host	Plug
Well:	Aquistore	Depth, meters	s: 2111.40	stressed	n/a	n/a
File: I	HOU-140757	Klinkenberg	N/A	-	-	
		Permeability	N/A	-	-	
		Swanson Pe	0.00281	-	-	
		Porosity, frac	0.068	-	-	
		maximum Sl	o/Pc, fraction:	0.00090		
	R35, microns:		3:	0.0394		
		R50 (median p	ore throat radius):	0.0232		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample: S	9 #118655m	un-	Host	Plug
Well:	Aquistore	Depth, meters:	2111.40	stressed	n/a	n/a
File: I	HOU-140757	Klinkenberg Perme	N/A	-	-	
		Permeability to Air	N/A	-	-	
		Swanson Permeat	0.00281	-	-	
		Porosity, fraction:		0.068	-	-
		maximum Sb/Pc,	fraction:	0.00090		
		R35, microns:		0.0394		
		R50 (median pore thr	oat radius):	0.0232		


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample: S9 #118655m		un-	Host Plug	
Well:	Aquistore	Depth, meters:	2111.40	stressed	n/a	n/a
File: I	HOU-140757 Klinkenberg Permeability, md:				-	-
		Permeability to Air,	N/A	-	-	
		Swanson Permeability, md:		0.00281	-	-
		Porosity, fraction:		0.068	-	-
		maximum Sb/Pc, fi	raction:	0.00090		
		R35, microns:		0.0394		
		R50 (median pore thro	0.0232			

MERCURY INJECTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S9 #118655m	un-	Host	Plug
Depth, meters:	2111.40	stressed	n/a	n/a
Klinkenberg Perr	neability, md:	N/A		-
Permeability to A	ir, md:	N/A	-	-
Swanson Perme	0.00281	-	-	
Porosity, fraction	:	0.068	-	-

maximum Sb/Pc, fraction: 0.00090 R35, microns: 0.0394 R50 (median pore throat radius): 0.0232

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J		Conversion other Labora id Systems,	itory psia	Estimate Above Wate	e Free r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10.5	0.000	1.000	10.3	0.00124	2.03	0.678	1.17	4.24	8.44
11.1	0.000	1.000	9.74	0.00121	2.14	0.714	1.24	4.49	8.92
12.3	0.000	1.000	8.78	0.00145	2.38	0.793	1.37	4.97	9.89
13.6	0.000	1.000	7.93	0.00161	2.63	0.878	1.52	5.50	10.9
15.1	0.000	1.000	7.15	0.00178	2.92	0.973	1.69	6.10	12.1
16.7	0.000	1.000	6.47	0.00197	3.23	1.08	1.86	6.75	13.4
18.5	0.000	1.000	5.84	0.00219	3.58	1.19	2.07	7.48	14.9
20.5	0.000	1.000	5.27	0.00242	3.96	1.32	2.29	8.28	16.5
22.5	0.000	1.000	4.79	0.00266	4.36	1.45	2.52	9.09	18.1
23.8	0.000	1.000	4.54	0.00281	4.60	1.53	2.66	9.62	19.1
25.2	0.000	1.000	4.28	0.00298	4.88	1.63	2.82	10.2	20.3
29.1	0.000	1.000	3.70	0.00345	5.64	1.88	3.26	11.8	23.4
33.7	0.000	1.000	3.20	0.00399	6.53	2.18	3.77	13.6	27.1
37.9	0.000	1.000	2.84	0.00449	7.34	2.45	4.24	15.3	30.5
41.0	0.000	1.000	2.63	0.00485	7.95	2.65	4.59	16.6	33.0
45.8	0.000	1.000	2.35	0.00542	8.88	2.96	5.13	18.5	36.8
50.8	0.000	1.000	2.12	0.00601	9.84	3.28	5.68	20.5	40.8
58.4	0.000	1.000	1.85	0.00691	11.3	3.77	6.53	23.6	46.9
65.1	0.000	1.000	1.65	0.00771	12.6	4.21	7.28	26.3	52.3
68.8	0.000	1.000	1.57	0.00815	13.3	4.45	7.70	27.8	55.3
81.4	0.000	1.000	1.32	0.00964	15.8	5.26	9.11	32.9	65.4
86.7	0.000	1.000	1.24	0.0103	16.8	5.60	9.70	35.0	69.7
95.1	0.000	1.000	1.13	0.0113	18.4	6.15	10.6	38.4	76.4
105	0.000	1.000	1.03	0.0124	20.3	6.77	11.7	42.4	84.4
115	0.000	1.000	0.940	0.0136	22.2	7.41	12.8	46.5	92.4
128	0.000	1.000	0.843	0.0151	24.8	8.26	14.3	51.7	103
142	0.000	1.000	0.761	0.0168	27.4	9.15	15.8	57.4	114
162	0.000	1.000	0.665	0.0192	31.4	10.5	18.1	65.5	130
178	0.000	1.000	0.607	0.0210	34.4	11.5	19.9	71.9	143
194	0.000	1.000	0.555	0.0230	37.6	12.5	21.7	78.4	156
215	0.000	1.000	0.500	0.0255	41.8	13.9	24.1	86.9	173
238	0.000	1.000	0.453	0.0282	46.1	15.4	26.6	96.2	191
265	0.000	1.000	0.407	0.0313	51.3	17.1	29.6	107	213
294	0.000	1.000	0.367	0.0348	56.9	19.0	32.9	119	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S9 #118655m	un-	Host	Plug
Depth, meters:	2111.40	stressed	n/a	n/a
Klinkenberg Pern	neability, md:	N/A	-	
Permeability to A	N/A	-	-	
Swanson Permea	0.00281	-	-	
Porosity, fraction	:	0.068	-	-

maximum Sb/Pc, fraction: 0.00090
R35, microns: 0.0394
R50 (median pore throat radius): 0.0232

Injection Mercury Pressure, Saturation,		Pseudo- Wetting Saturation,	Pore Throat Radius,	J	Conversion to other Laboratory Fluid Systems, psia			Estimated Height Above Free Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
325	0.004	0.996	0.332	0.0385	63.0	21.0	36.3	131	261
360	0.007	0.993	0.299	0.0426	69.7	23.2	40.3	145	289
400	0.011	0.989	0.270	0.0473	77.4	25.8	44.7	162	322
443	0.016	0.984	0.243	0.0525	85.9	28.6	49.6	179	356
494	0.021	0.979	0.218	0.0585	95.7	31.9	55.3	200	397
543	0.026	0.974	0.198	0.0643	105	35.1	60.8	219	436
602	0.031	0.969	0.179	0.0713	117	38.9	67.4	243	484
668	0.037	0.963	0.161	0.0790	129	43.1	74.7	270	537
739	0.043	0.957	0.146	0.0875	143	47.7	82.7	299	594
819	0.051	0.949	0.131	0.0970	159	52.9	91.7	331	658
910	0.062	0.938	0.118	0.108	176	58.8	102	368	731
1010	0.074	0.926	0.107	0.119	195	65.1	113	408	812
1120	0.091	0.909	0.0965	0.132	216	72.1	125	453	900
1240	0.111	0.889	0.0872	0.146	239	79.8	138	501	997
1370	0.138	0.862	0.0787	0.162	265	88.5	153	554	1100
1520	0.172	0.828	0.0710	0.180	294	98.0	170	614	1220
1680	0.208	0.792	0.0641	0.199	326	109	188	679	1350
1860	0.242	0.758	0.0578	0.221	361	120	208	752	1500
2070	0.272	0.728	0.0522	0.245	400	133	231	837	1660
2290	0.301	0.699	0.0471	0.271	443	148	256	925	1840
2530	0.329	0.671	0.0425	0.300	491	164	284	1020	2030
2810	0.357	0.643	0.0384	0.333	544	181	314	1140	2260
3110	0.385	0.615	0.0346	0.369	604	201	348	1260	2500
3450	0.414	0.586	0.0312	0.408	669	223	386	1390	2770
3820	0.443	0.557	0.0282	0.452	741	247	428	1540	3070
4240	0.473	0.527	0.0254	0.502	821	274	474	1710	3410
4690	0.503	0.497	0.0230	0.555	909	303	525	1900	3770
5200	0.534	0.466	0.0207	0.615	1010	336	582	2100	4180
5760	0.565	0.435	0.0187	0.682	1120	372	644	2330	4630
6380	0.596	0.404	0.0169	0.756	1240	412	714	2580	5130
7070	0.627	0.373	0.0152	0.837	1370	457	791	2860	5680
7840	0.658	0.342	0.0138	0.928	1520	506	877	3170	6300
8680	0.688	0.312	0.0124	1.03	1680	561	971	3510	6980
9620	0.717	0.283	0.0112	1.14	1860	621	1080	3890	7730

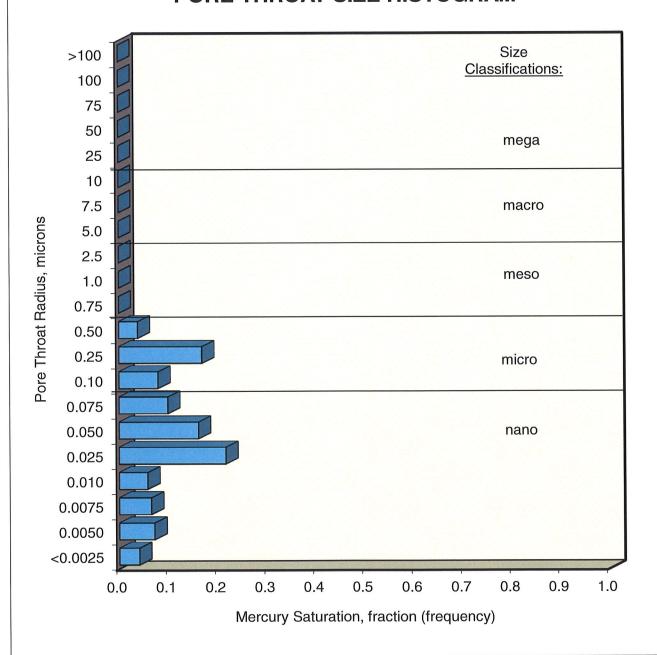
Company: University of North Dakota

Well:

Aquistore

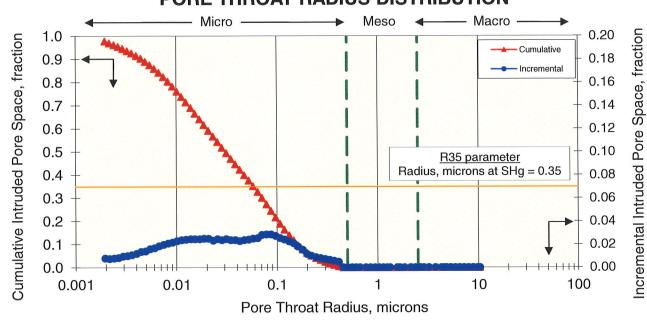
File:

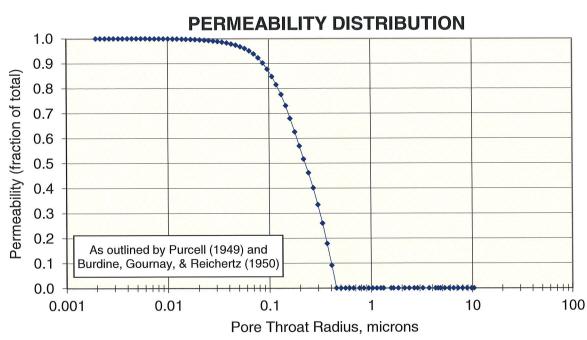
HOU-140757


Sample:	S9 #118655m			Plug
Depth, meters:	2111.40	stressed	n/a	n/a
Klinkenberg Perr	N/A	N/A -		
Permeability to A	N/A	-	-	
Swanson Perme	0.00281	-	-	
Porosity, fraction:		0.068		-

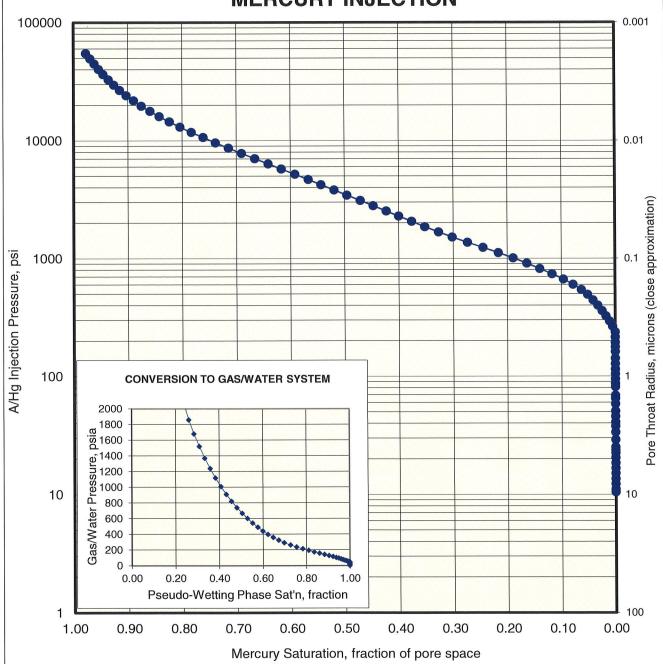
maximum Sb/Pc, fraction: 0.00090
R35, microns: 0.0394
R50 (median pore throat radius): 0.0232

		Pseudo-	Pore			Conversion			d Height	
Injection	Mercury	Wetting	Throat		to o	other Labora	atory		Free	
Pressure,	Saturation,	Saturation,	Radius,	J	Flui	d Systems,	psia	Wate	Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W	
10700	0.745	0.255	0.0101	1.26	2070	688	1190	4320	8600	
11800	0.772	0.228	0.00912	1.40	2290	763	1320	4770	9480	
13100	0.797	0.203	0.00823	1.55	2540	845	1460	5290	10500	
14500	0.820	0.180	0.00743	1.72	2810	937	1620	5860	11700	
16100	0.843	0.157	0.00671	1.90	3110	1040	1800	6510	12900	
17800	0.864	0.136	0.00605	2.11	3450	1150	1990	7190	14300	
19700	0.883	0.117	0.00546	2.33	3820	1270	2210	7960	15800	
21900	0.899	0.101	0.00493	2.59	4230	1410	2450	8850	17600	
24200	0.914	0.086	0.00445	2.87	4690	1560	2710	9780	19500	
26800	0.927	0.073	0.00402	3.18	5200	1730	3000	10800	21500	
29700	0.938	0.062	0.00362	3.52	5760	1920	3330	12000	23900	
32900	0.948	0.052	0.00327	3.90	6380	2130	3680	13300	26400	
36500	0.958	0.042	0.00295	4.32	7070	2360	4080	14800	29300	
40400	0.965	0.035	0.00267	4.79	7830	2610	4520	16300	32500	
44800	0.973	0.027	0.00241	5.30	8680	2890	5010	18100	36000	
49600	0.980	0.020	0.00217	5.87	9620	3210	5550	20000	39900	
55000	0.986	0.014	0.00196	6.51	10700	3550	6150	22200	44200	


Company:	University of North Dakota	Sample: S8 #118654-2m		un-	Host Plug		
Well:	Aquistore	Depth, meters	s:	2108.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:			N/A	-	-
		Permeability to Air, md:			N/A	-	-
		Swanson Permeability, md:			0.00563	-	-
		Porosity, frac	Porosity, fraction:				-
		maximum St	o/Pc, frac	ction:	0.00135		
		R35, microns	R35, microns:		0.0583		
		R50 (median pore throat radius):			0.0306		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample: S8 #118654-2m		un-	Host Plug		
Well:	Aquistore	Depth, mete	rs:	2108.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:			N/A	-	-
		Permeability	y to Air, m	N/A	-	-	
		Swanson P	0.00563	-	-		
		Porosity, fra	Porosity, fraction:		0.068	-	-
		maximum S	0.00135				
		R35, microns:			0.0583		
		R50 (median pore throat radius):			0.0306		


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample:	S8 #118	654-2m	un-	Host	Plug
Well:	Aquistore	Depth, meter	s:	2108.10	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:			N/A	-	-
		Permeability to Air, md:			N/A	-	-
		Swanson Permeability, md: Porosity, fraction:			0.00563	-	-
					0.068	-	-
		maximum Sb/Pc, fraction:			0.00135		
		R35, micron	s:		0.0583		
		R50 (median	ore throat ra	dius):	0.0306		

MERCURY INJECTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

S8 #118654-2m Host Plug Sample: un-Depth, meters: 2108.10 stressed n/a n/a Klinkenberg Permeability, md: N/A Permeability to Air, md: N/A Swanson Permeability, md: 0.00563 Porosity, fraction: 0.068

maximum Sb/Pc, fraction: 0.00135 R35, microns: 0.0583 R50 (median pore throat radius): 0.0306

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	Throat to other Labo Radius, J Fluid Systems			ntory psia	Estimate Above Wate	Free r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10.5	0.000	1.000	10.3	0.00177	2.03	0.678	1.17	4.24	8.44
11.1	0.000	1.000	9.74	0.00186	2.14	0.714	1.24	4.49	8.92
12.3	0.000	1.000	8.78	0.00206	2.38	0.793	1.37	4.97	9.89
13.6	0.000	1.000	7.93	0.00228	2.63	0.878	1.52	5.50	10.9
15.1	0.000	1.000	7.15	0.00253	2.92	0.973	1.69	6.10	12.1
16.7	0.000	1.000	6.47	0.00280	3.23	1.08	1.86	6.75	13.4
18.5	0.000	1.000	5.84	0.00310	3.58	1.19	2.07	7.48	14.9
20.5	0.000	1.000	5.27	0.00344	3.96	1.32	2.29	8.28	16.5
22.5	0.000	1.000	4.79	0.00378	4.36	1.45	2.52	9.09	18.1
23.8	0.000	1.000	4.54	0.00399	4.60	1.53	2.66	9.62	19.1
25.2	0.000	1.000	4.28	0.00423	4.88	1.63	2.82	10.2	20.3
29.1	0.000	1.000	3.70	0.00489	5.64	1.88	3.26	11.8	23.4
33.7	0.000	1.000	3.20	0.00567	6.53	2.18	3.77	13.6	27.1
37.9	0.000	1.000	2.84	0.00637	7.34	2.45	4.24	15.3	30.5
41.0	0.000	1.000	2.63	0.00689	7.95	2.65	4.59	16.6	33.0
45.8	0.000	1.000	2.35	0.00771	8.88	2.96	5.13	18.5	36.8
50.8	0.000	1.000	2.12	0.00854	9.84	3.28	5.68	20.5	40.8
58.4	0.000	1.000	1.84	0.00982	11.3	3.77	6.53	23.6	46.9
65.2	0.000	1.000	1.65	0.0110	12.6	4.21	7.29	26.3	52.4
68.9	0.000	1.000	1.56	0.0116	13.3	4.45	7.71	27.8	55.4
81.5	0.000	1.000	1.32	0.0137	15.8	5.26	9.11	32.9	65.5
86.8	0.000	1.000	1.24	0.0146	16.8	5.60	9.71	35.1	69.8
95.2	0.000	1.000	1.13	0.0160	18.4	6.15	10.6	38.5	76.5
105	0.000	1.000	1.03	0.0176	20.3	6.78	11.7	42.4	84.4
115	0.000	1.000	0.939	0.0193	22.2	7.41	12.8	46.5	92.4
128	0.000	1.000	0.842	0.0215	24.8	8.26	14.3	51.7	103
142	0.000	1.000	0.761	0.0238	27.4	9.15	15.8	57.4	114
162	0.000	1.000	0.665	0.0273	31.4	10.5	18.1	65.5	130
178	0.000	1.000	0.607	0.0299	34.4	11.5	19.9	71.9	143
194	0.000	1.000	0.555	0.0326	37.6	12.5	21.7	78.4	156
215	0.000	1.000	0.500	0.0362	41.8	13.9	24.1	86.9	173
238	0.000	1.000	0.453	0.0400	46.1	15.4	26.6	96.2	191
265	0.005	0.995	0.407	0.0445	51.3	17.1	29.6	107	213
294	0.010	0.990	0.367	0.0494	56.9	19.0	32.9	119	236

Company: University of North Dakota

Well:

Aquistore

File:

HOU-140757

Sample:	S8 #118654-2m	un-	Host	Plug
Depth, meters:	2108.10	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	-
Permeability to	N/A	-	-	
Swanson Pern	0.00563	-	-	
Porosity, fracti	0.068	-	-	

maximum Sb/Pc, fraction:

0.00135

R35, microns:

0.0583

R50 (median pore throat radius):

0.0306

Injection	Mercury	Pseudo- Wetting	Pore Throat		to o	Conversion ther Labora	itory	Estimate Above	Free
Pressure,	Saturation,	Saturation,	Radius,	J		d Systems,		Water	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
325	0.017	0.983	0.332	0.0546	63.0	21.0	36.4	131	261
360	0.017	0.983	0.299	0.0605	69.8	23.3	40.3	145	289
400	0.024	0.968	0.270	0.0672	77.4	25.8	44.7	162	322
443	0.032	0.959	0.243	0.0072	85.9	28.6	49.6	179	356
494	0.051	0.949	0.218	0.0830	95.7	31.9	55.3	200	397
543	0.063	0.937	0.198	0.0913	105	35.1	60.8	219	436
602	0.078	0.922	0.179	0.101	117	38.9	67.4	243	484
667	0.096	0.904	0.161	0.112	129	43.1	74.7	270	536
739	0.117	0.883	0.146	0.124	143	47.7	82.7	299	594
819	0.140	0.860	0.132	0.138	159	52.9	91.7	331	658
910	0.164	0.836	0.118	0.153	176	58.8	102	368	731
1010	0.189	0.811	0.107	0.169	195	65.1	113	408	812
1120	0.217	0.783	0.0965	0.188	216	72.1	125	453	900
1240	0.245	0.755	0.0872	0.208	239	79.8	138	501	997
1370	0.274	0.726	0.0787	0.230	265	88.5	153	554	1100
1520	0.302	0.698	0.0710	0.255	294	98.0	170	614	1220
1680	0.327	0.673	0.0641	0.283	326	109	188	679	1350
1860	0.352	0.648	0.0578	0.313	361	120	208	752	1500
2070	0.376	0.624	0.0522	0.347	400	133	231	837	1660
2290	0.400	0.600	0.0471	0.385	443	148	256	925	1840
2530	0.423	0.577	0.0425	0.426	491	164	284	1020	2030
2810	0.447	0.553	0.0384	0.472	544	181	314	1140	2260
3110	0.471	0.529	0.0346	0.524	604	201	348	1260	2500
3450	0.495	0.505	0.0312	0.580	669	223	386	1390	2770
3820	0.519	0.481	0.0282	0.642	741	247	428	1540	3070
4240	0.543	0.457	0.0254	0.712	821	274	474	1710	3410
4690	0.567	0.433	0.0230	0.789	909	303	525	1900	3770
5200	0.592	0.408	0.0207	0.874	1010	336	582	2100	4180
5760	0.617	0.383	0.0187	0.968	1120	372	644	2330	4630
6380	0.641	0.359	0.0169	1.07	1240	412	714	2580	5130
7070	0.666	0.334	0.0152	1.19	1370	457	791	2860	5680
7840	0.690	0.310	0.0138	1.32	1520	506	877	3170	6300
8680	0.715	0.285	0.0124	1.46	1680	561	972	3510	6980
9620	0.738	0.262	0.0112	1.62	1860	621	1080	3890	7730

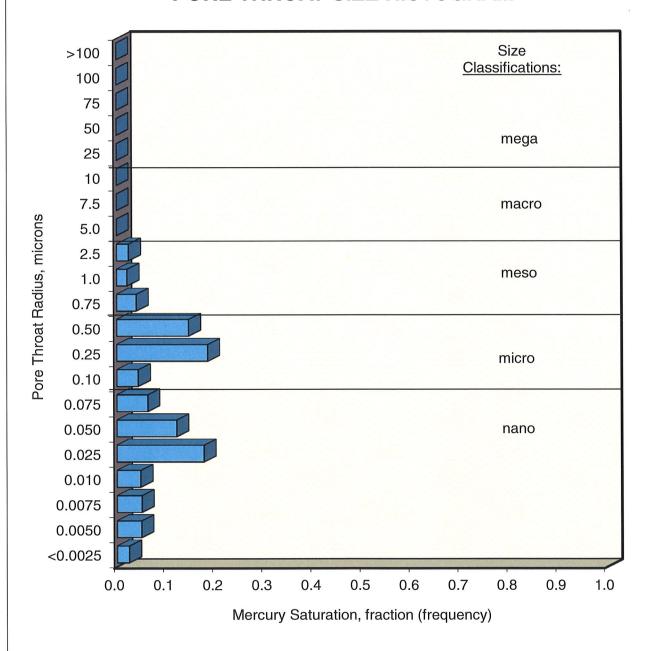
Company: University of North Dakota

Well:

Aquistore

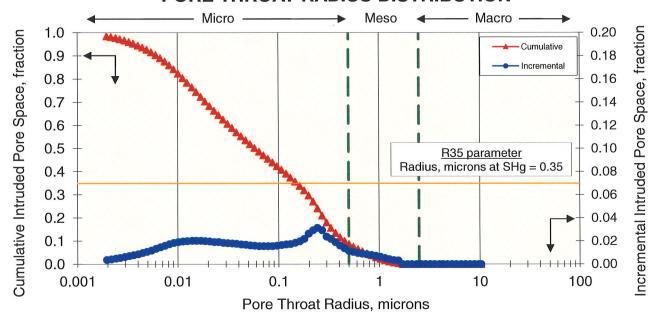
File:

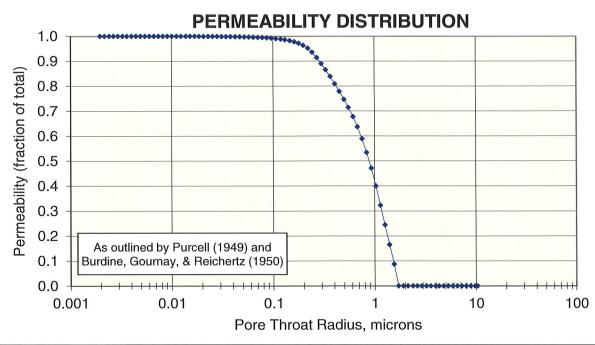
HOU-140757


Sample:	S8 #118654-2m	un-	Host	Plug
Depth, meters:	2108.10	stressed	n/a	n/a
Klinkenberg Pe	N/A	-	-	
Permeability to	N/A	-	-	
Swanson Perm	0.00563		-	
Porosity, fraction	0.068	-	-	

maximum Sb/Pc, fraction: 0.00135 R35, microns: 0.0583 R50 (median pore throat radius): 0.0306

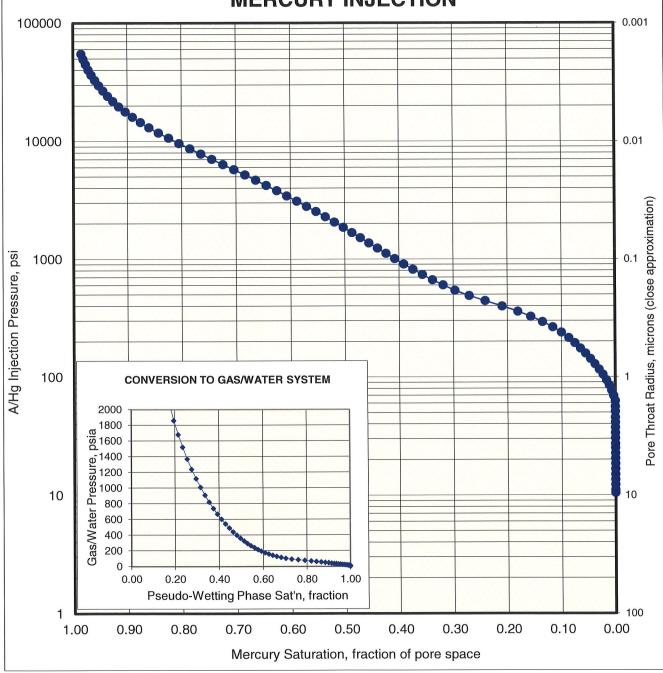
		Pseudo-	Pore			Conversion	ı	Estimate	d Height
Injection	Mercury	Wetting	Throat		to o	ther Labora	atory	Above	Free
Pressure,	Saturation,	Saturation,	Radius,	J	Fluid Systems, psia		psia	Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10700	0.761	0.239	0.0101	1.79	2070	689	1190	4320	8600
11800	0.783	0.217	0.00912	1.99	2290	763	1320	4770	9480
13100	0.804	0.196	0.00823	2.20	2540	845	1460	5290	10500
14500	0.824	0.176	0.00743	2.44	2810	937	1620	5860	11700
16100	0.842	0.158	0.00671	2.70	3110	1040	1800	6510	12900
17800	0.859	0.141	0.00605	2.99	3450	1150	1990	7190	14300
19700	0.875	0.125	0.00546	3.32	3820	1270	2210	7960	15800
21900	0.889	0.111	0.00493	3.67	4240	1410	2450	8850	17600
24200	0.903	0.097	0.00445	4.07	4690	1560	2710	9780	19500
26800	0.915	0.085	0.00402	4.51	5200	1730	3000	10800	21500
29700	0.926	0.074	0.00362	5.00	5760	1920	3330	12000	23900
32900	0.936	0.064	0.00327	5.54	6380	2130	3680	13300	26400
36500	0.946	0.054	0.00295	6.13	7070	2360	4080	14800	29300
40400	0.954	0.046	0.00267	6.79	7830	2610	4520	16300	32500
44800	0.962	0.038	0.00241	7.53	8680	2890	5010	18100	36000
49600	0.970	0.030	0.00217	8.34	9620	3210	5550	20000	39900
55000	0.978	0.022	0.00196	9.24	10700	3550	6150	22200	44200


Company:	University of North Dakota	Sample:	S7 #118653m	un-	Host	Plug
Well:	Aquistore	Depth, meters	s: 2105.20	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Klinkenberg Permeability, md:			-
		Permeability	to Air, md:	N/A	-	-
		Swanson Pe	0.0484	-	-	
		Porosity, frac	Porosity, fraction:			-
		maximum Sb/Pc, fraction:		0.00483		
		R35, microns	R35, microns:			
		R50 (median p	ore throat radius):	0.0590		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample:	S7 #1186	53m	un-	Host	Plug
Well:	Aquistore	Depth, meters	: 210	5.20	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg Permeability, md:			N/A	-	-
		Permeability	to Air, md:		N/A	-	-
		Swanson Permeability, md:			0.0484	-	-
		Porosity, frac	tion:		0.087	-	-
		maximum Sb	/Pc, fraction:		0.00483		
		R35, microns	:		0.152		
		R50 (median po	ore throat radius):	0.0590		

PORE THROAT RADIUS DISTRIBUTION


Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S7 #118653m	un-	Host	Plug
Depth, meters:	2105.20	stressed	n/a	n/a
Klinkenberg Perr	meability, md:	N/A	-	-
Permeability to A	N/A	-	-	
Swanson Perme	0.0484	-	-	
Porosity, fraction	0.087	-	-	

maximum Sb/Pc, fraction: 0.00483
R35, microns: 0.152
R50 (median pore throat radius): 0.0590

MERCURY INJECTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S7 #118653m	un-	Host	Plug
Depth, meters:	2105.20	stressed	n/a	n/a
Klinkenberg Pern	neability, md:	N/A		-
Permeability to A	N/A	-	-	
Swanson Permea	0.0484	-	-	
Porosity, fraction	•	0.087		-

maximum Sb/Pc, fraction: 0.00483
R35, microns: 0.152
R50 (median pore throat radius): 0.0590

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	Flui	Conversion other Labora id Systems,	itory psia	Above Wate	r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10.5	0.000	4 000	40.0	0.00455	0.00	0.070	1.17	4.24	8.44
10.5	0.000	1.000	10.3	0.00455	2.03	0.678		4.24 4.49	8.92
11.1	0.000	1.000	9.74	0.00480	2.14	0.714	1.24		9.89
12.3	0.000	1.000	8.79	0.00532	2.38	0.792	1.37	4.97	
13.6	0.000	1.000	7.93	0.00589	2.63	0.877	1.52	5.50	10.9
15.0	0.000	1.000	7.16	0.00652	2.91	0.972	1.68	6.06	12.1
16.7	0.000	1.000	6.47	0.00722	3.23	1.08	1.86	6.75	13.4
18.5	0.000	1.000	5.83	0.00801	3.58	1.19	2.07	7.48	14.9
20.5	0.000	1.000	5.27	0.00887	3.96	1.32	2.29	8.28	16.5
22.7	0.000	1.000	4.74	0.00986	4.41	1.47	2.54	9.17	18.2
25.2	0.000	1.000	4.28	0.0109	4.88	1.63	2.82	10.2	20.3
27.3	0.000	1.000	3.94	0.0119	5.30	1.77	3.06	11.0	21.9
30.5	0.000	1.000	3.53	0.0132	5.92	1.97	3.42	12.3	24.5
33.7	0.000	1.000	3.20	0.0146	6.52	2.17	3.77	13.6	27.1
37.4	0.000	1.000	2.88	0.0162	7.25	2.42	4.18	15.1	30.1
41.4	0.000	1.000	2.61	0.0179	8.02	2.67	4.63	16.7	33.3
45.5	0.000	1.000	2.37	0.0197	8.81	2.94	5.09	18.4	36.6
51.1	0.000	1.000	2.11	0.0222	9.90	3.30	5.72	20.7	41.1
56.4	0.000	1.000	1.91	0.0244	10.9	3.64	6.31	22.8	45.3
62.9	0.000	1.000	1.71	0.0273	12.2	4.07	7.04	25.4	50.6
69.4	0.003	0.997	1.55	0.0301	13.4	4.48	7.76	28.0	55.8
77.0	0.007	0.993	1.40	0.0334	14.9	4.98	8.62	31.1	61.9
85.4	0.011	0.989	1.26	0.0370	16.6	5.52	9.56	34.5	68.6
94.3	0.016	0.984	1.14	0.0409	18.3	6.09	10.5	38.1	75.8
105	0.023	0.977	1.03	0.0454	20.3	6.77	11.7	42.4	84.4
116	0.030	0.970	0.927	0.0504	22.5	7.51	13.0	46.9	93.2
129	0.038	0.962	0.836	0.0559	25.0	8.32	14.4	52.1	104
143	0.046	0.954	0.753	0.0621	27.7	9.25	16.0	57.8	115
159	0.055	0.945	0.679	0.0688	30.8	10.3	17.8	64.3	128
175	0.065	0.935	0.615	0.0760	34.0	11.3	19.6	70.7	141
195	0.075	0.925	0.553	0.0845	37.8	12.6	21.8	78.8	157
215	0.087	0.913	0.501	0.0933	41.7	13.9	24.1	86.9	173
239	0.100	0.900	0.451	0.103	46.2	15.4	26.7	96.6	192
265	0.116	0.884	0.407	0.115	51.3	17.1	29.6	107	213
294	0.135	0.865	0.367	0.127	56.9	19.0	32.9	119	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S7 #118653m	un-	Host	Plug
Depth, meters:	2105.20	stressed	n/a	n/a
Klinkenberg Pern	neability, md:	N/A	-	-
Permeability to A	N/A	-	-	
Swanson Permea	ability, md:	0.0484	-	
Porosity, fraction	:	0.087	-	

maximum Sb/Pc, fraction: 0.00483
R35, microns: 0.152
R50 (median pore throat radius): 0.0590

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	to o	Conversior ther Labora d Systems,	atory	Estimate Above Water	Free
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
326	0.157	0.843	0.330	0.141	63.2	21.1	36.5	132	262
360	0.181	0.819	0.299	0.156	69.8	23.3	40.3	145	289
399	0.210	0.790	0.270	0.173	77.3	25.8	44.6	161	321
443	0.241	0.759	0.243	0.192	85.8	28.6	49.5	179	356
490	0.271	0.729	0.220	0.212	94.9	31.6	54.8	198	394
543	0.297	0.703	0.198	0.235	105	35.1	60.7	219	436
603	0.319	0.681	0.179	0.262	117	39.0	67.5	244	485
667	0.339	0.661	0.162	0.289	129	43.1	74.6	270	536
739	0.357	0.643	0.146	0.320	143	47.7	82.7	299	594
820	0.375	0.625	0.131	0.355	159	52.9	91.7	331	659
907	0.392	0.608	0.119	0.393	176	58.6	102	367	729
1010	0.408	0.592	0.107	0.437	195	65.1	113	408	812
1120	0.424	0.576	0.0966	0.484	216	72.0	125	453	900
1240	0.440	0.560	0.0872	0.536	240	79.8	138	501	997
1370	0.456	0.544	0.0787	0.594	265	88.5	153	554	1100
1520	0.471	0.529	0.0710	0.658	294	98.0	170	614	1220
1680	0.487	0.513	0.0641	0.729	326	109	188	679	1350
1860	0.503	0.497	0.0578	0.808	361	120	209	752	1500
2060	0.519	0.481	0.0522	0.895	400	133	231	833	1660
2290	0.536	0.464	0.0471	0.992	443	148	256	925	1840
2540	0.553	0.447	0.0425	1.10	491	164	284	1030	2040
2810	0.571	0.429	0.0383	1.22	544	181	314	1140	2260
3110	0.589	0.411	0.0346	1.35	603	201	348	1260	2500
3450	0.607	0.393	0.0312	1.50	668	223	386	1390	2770
3820	0.626	0.374	0.0282	1.66	741	247	428	1540	3070
4230	0.645	0.355	0.0254	1.84	821	274	474	1710	3400
4690	0.664	0.336	0.0230	2.03	909	303	525	1900	3770
5200	0.684	0.316	0.0207	2.25	1010	336	582	2100	4180
5760	0.704	0.296	0.0187	2.50	1120	372	644	2330	4630
6380	0.724	0.276	0.0169	2.77	1240	412	714	2580	5130
7070	0.744	0.256	0.0152	3.07	1370	457	791	2860	5680
7840	0.765	0.235	0.0138	3.40	1520	506	877	3170	6300
8680	0.785	0.215	0.0124	3.76	1680	561	971	3510	6980
9620	0.804	0.196	0.0112	4.17	1860	621	1080	3890	7730

Company: University of North Dakota

Well:

Aquistore

File:

HOU-140757

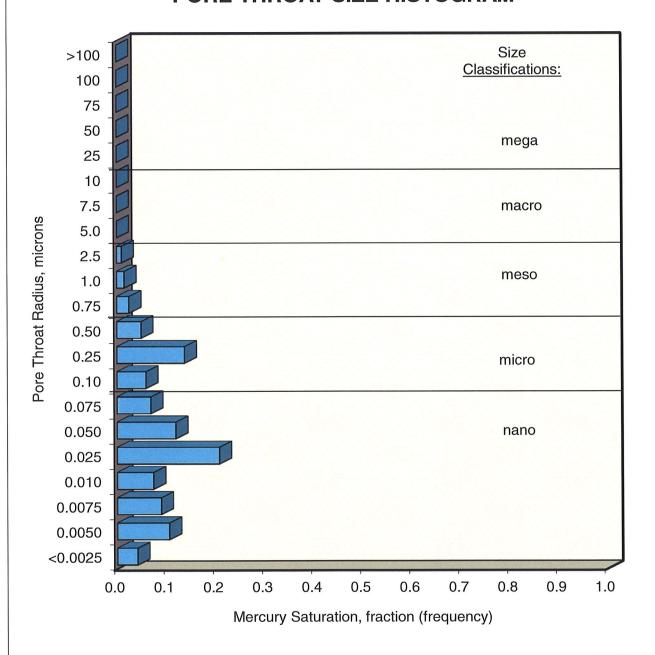
Sample:	S7 #118653m	un-	Host	Plug
Depth, meters:	2105.20	stressed	n/a	n/a
Klinkenberg Per	meability, md:	N/A		-
Permeability to	Air, md:	N/A	-	-
Swanson Perme	eability, md:	0.0484	-	-
Porosity, fraction	n:	0.087	-	-

maximum Sb/Pc, fraction:

0.00483

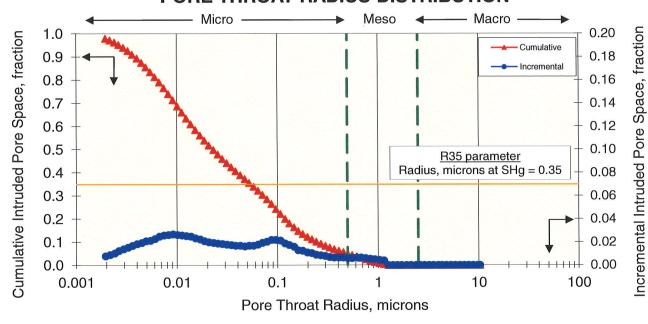
R35, microns:

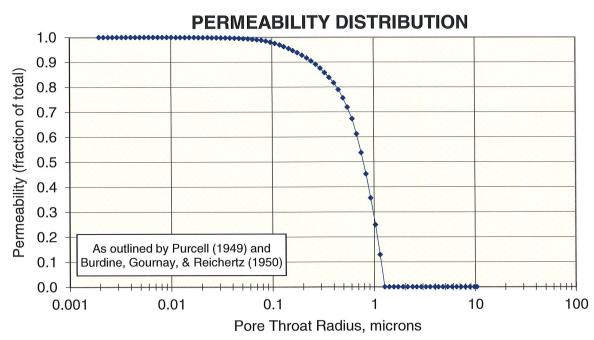
0.152


R50 (median pore throat radius):

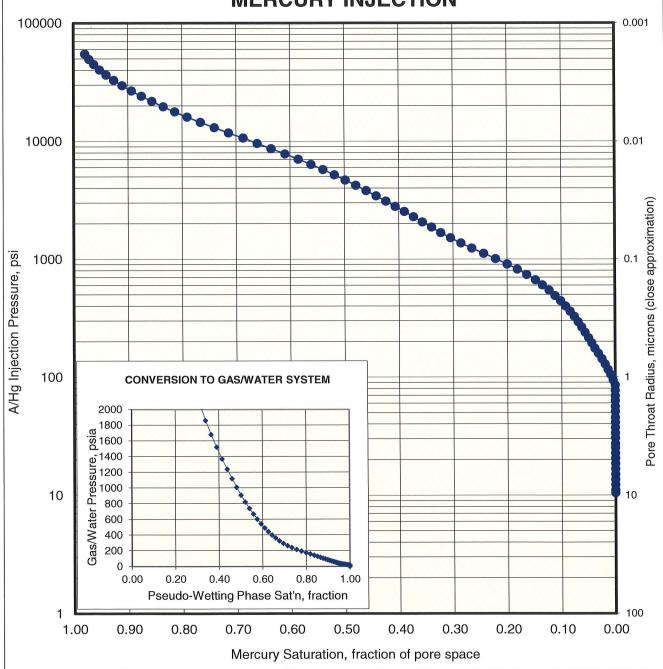
0.0590

		Pseudo-	Pore			Conversion	ı	Estimated Height	
Injection	Mercury	Wetting	Throat		to o	ther Labora	atory	Above	Free
Pressure,	Saturation,	Saturation,	Radius,	J	Fluid Systems, psia			Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
	-								
10700	0.824	0.176	0.0101	4.62	2070	689	1190	4320	8600
11800	0.842	0.158	0.00912	5.12	2290	763	1320	4770	9480
13100	0.860	0.140	0.00823	5.67	2540	845	1460	5290	10500
14500	0.876	0.124	0.00743	6.29	2810	937	1620	5860	11700
16100	0.890	0.110	0.00671	6.97	3110	1040	1800	6510	12900
17800	0.904	0.096	0.00605	7.72	3450	1150	1990	7190	14300
19700	0.916	0.084	0.00546	8.55	3820	1270	2210	7960	15800
21900	0.926	0.074	0.00493	9.48	4240	1410	2450	8850	17600
24200	0.936	0.064	0.00445	10.5	4690	1560	2710	9780	19500
26800	0.945	0.055	0.00402	11.6	5200	1730	3000	10800	21500
29700	0.953	0.047	0.00362	12.9	5760	1920	3330	12000	23900
32900	0.960	0.040	0.00327	14.3	6380	2130	3680	13300	26400
36500	0.966	0.034	0.00295	15.8	7070	2360	4080	14800	29300
40400	0.972	0.028	0.00266	17.5	7840	2610	4520	16300	32500
44800	0.977	0.023	0.00241	19.4	8680	2890	5010	18100	36000
49600	0.981	0.019	0.00217	21.5	9620	3210	5550	20000	39900
55000	0.985	0.015	0.00196	23.8	10700	3550	6150	22200	44200


Company:	University of North Dakota	Sample: S6 #118652-2m		un-	Host	Plug	
Well:	Aquistore	Depth, meters: 2104.70 s		stressed	n/a	n/a	
File:	HOU-140757	Klinkenberg Permeability, md: Permeability to Air, md: Swanson Permeability, md:			N/A	-	-
					N/A	-	-
					0.00473	-	-
		Porosity, fra		0.052	-	-	
		maximum Sb/Pc, fraction:			0.00122		
		R35, micron	s:		0.0542		
		R50 (median	pore throat ra	idius):	0.0228		


PORE THROAT SIZE HISTOGRAM

Company:	University of North Dakota	Sample:	S6 #11	8652-2m	un-	Host	Plug
Well:	Aquistore	Depth, meter	s:	2104.70	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Permeabil	ity, md:	N/A		-
Permeabilit		to Air, mo	d:	N/A	-	-	
		Swanson Permeability, md:			0.00473	-	-
		Porosity, fra		0.052	-	-	
		maximum Sb/Pc, fraction: R35, microns:			0.00122		
					0.0542		
		R50 (median	0.0228				


PORE THROAT RADIUS DISTRIBUTION

Company:	University of North Dakota	Sample: S6 #118652-2m			un-	Host	Plug
Well:	Aquistore	Depth, meters: 2104.70		stressed	n/a	n/a	
File:	HOU-140757	Klinkenberg Permeability, md:			N/A	-	-
		Permeability to Air, md:			N/A	-	-
		Swanson Permeability, md:			0.00473	-	-
		Porosity, fra		0.052	-	-	
		maximum Sb/Pc, fraction:			0.00122		
		R35, micron	s:		0.0542		
		R50 (median	0.0228				

MERCURY INJECTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S6 #118652-2m	un-	Host	Plug
Depth, meters:	2104.70	stressed	n/a	n/a
Klinkenberg Pe	rmeability, md:	N/A	-	-
Permeability to	Air, md:	N/A	-	-
Swanson Perm	eability, md:	0.00473	-	-
Porosity, fraction	on:	0.052	-	-

maximum Sb/Pc, fraction: 0.00122 R35, microns: 0.0542 R50 (median pore throat radius): 0.0228

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J		Conversion other Labora id Systems,	itory psia	Estimated He Above Fre Water, fee		
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W	
10.5	0.000	1.000	10.3	0.00185	2.03	0.678	1.17	4.24	8.44	
11.1	0.000	1.000	9.74	0.00105	2.14	0.714	1.24	4.49	8.92	
12.3	0.000	1.000	8.79	0.00133	2.38	0.792	1.37	4.97	9.89	
13.6	0.000	1.000	7.93	0.00210	2.63	0.732	1.52	5.50	10.9	
15.0	0.000	1.000	7.16	0.00265	2.91	0.972	1.68	6.06	12.1	
16.7	0.000	1.000	6.47	0.00294	3.23	1.08	1.86	6.75	13.4	
18.5	0.000	1.000	5.83	0.00234	3.58	1.19	2.07	7.48	14.9	
20.5	0.000	1.000	5.27	0.00361	3.96	1.32	2.29	8.28	16.5	
22.7	0.000	1.000	4.74	0.00401	4.41	1.47	2.54	9.17	18.2	
25.2	0.000	1.000	4.28	0.00444	4.88	1.63	2.82	10.2	20.3	
27.3	0.000	1.000	3.94	0.00482	5.30	1.77	3.06	11.0	21.9	
30.6	0.000	1.000	3.53	0.00539	5.92	1.97	3.42	12.4	24.6	
33.7	0.000	1.000	3.20	0.00594	6.53	2.18	3.77	13.6	27.1	
37.4	0.000	1.000	2.88	0.00659	7.25	2.42	4.18	15.1	30.1	
41.4	0.000	1.000	2.60	0.00729	8.02	2.67	4.63	16.7	33.3	
45.5	0.000	1.000	2.37	0.00802	8.82	2.94	5.09	18.4	36.6	
51.1	0.000	1.000	2.11	0.00901	9.91	3.30	5.72	20.7	41.1	
56.4	0.000	1.000	1.91	0.00994	10.9	3.64	6.31	22.8	45.3	
63.0	0.000	1.000	1.71	0.0111	12.2	4.07	7.04	25.5	50.6	
69.4	0.000	1.000	1.55	0.0122	13.4	4.48	7.76	28.0	55.8	
77.1	0.000	1.000	1.40	0.0136	14.9	4.98	8.62	31.2	62.0	
85.5	0.000	1.000	1.26	0.0151	16.6	5.52	9.56	34.6	68.7	
94.3	0.004	0.996	1.14	0.0166	18.3	6.09	10.6	38.1	75.8	
105	0.008	0.992	1.03	0.0185	20.3	6.77	11.7	42.4	84.4	
116	0.013	0.987	0.926	0.0205	22.5	7.51	13.0	46.9	93.2	
129	0.019	0.981	0.836	0.0227	25.0	8.33	14.4	52.1	104	
143	0.025	0.975	0.752	0.0253	27.8	9.25	16.0	57.8	115	
159	0.031	0.969	0.678	0.0280	30.8	10.3	17.8	64.3	128	
175	0.038	0.962	0.614	0.0309	34.0	11.3	19.6	70.7	141	
195	0.044	0.956	0.552	0.0344	37.8	12.6	21.8	78.8	157	
215	0.050	0.950	0.500	0.0380	41.7	13.9	24.1	86.9	173	
239	0.056	0.944	0.451	0.0421	46.3	15.4	26.7	96.6	192	
265	0.063	0.937	0.407	0.0467	51.3	17.1	29.6	107	213	
294	0.069	0.931	0.366	0.0518	57.0	19.0	32.9	119	236	

Company: University of North Dakota

Well:

Aquistore

File:

HOU-140757

Sample:	S6 #118652-2m	un-	Host	Plug
Depth, meters:	2104.70	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	•
Permeability to	Air, md:	N/A	-	-
Swanson Perm	neability, md:	0.00473		-
Porosity, fraction	on:	0.052	-	-

maximum Sb/Pc, fraction:

0.00122

R35, microns:

0.0542

R50 (median pore throat radius):

0.0228

Injection	Mercury	Pseudo- Wetting	Pore		to o	Conversion	atory	Estimate Above	Free
Pressure,	Saturation,	Saturation,	Radius,	J	G-W	d Systems,	O-W	Water G-W	O-W
psia	fraction	fraction	microns	Values	G-W	G-O	U-VV	G-W	O-W
327	0.076	0.924	0.330	0.0576	63.3	21.1	36.5	132	263
361	0.084	0.916	0.299	0.0636	69.9	23.3	40.4	146	290
400	0.092	0.908	0.270	0.0704	77.4	25.8	44.7	162	322
444	0.101	0.899	0.243	0.0782	86.0	28.7	49.6	179	357
490	0.112	0.888	0.220	0.0865	95.0	31.7	54.9	198	394
544	0.123	0.877	0.198	0.0959	105	35.1	60.8	220	437
604	0.135	0.865	0.178	0.107	117	39.0	67.6	244	485
668	0.148	0.852	0.161	0.118	129	43.1	74.7	270	537
740	0.164	0.836	0.146	0.130	143	47.8	82.8	299	595
821	0.181	0.819	0.131	0.145	159	53.0	91.8	332	660
909	0.200	0.800	0.119	0.160	176	58.7	102	367	731
1010	0.221	0.779	0.107	0.178	195	65.1	113	408	812
1120	0.243	0.757	0.0965	0.197	216	72.1	125	453	900
1240	0.265	0.735	0.0871	0.218	240	79.9	138	501	997
1370	0.285	0.715	0.0786	0.242	266	88.5	153	554	1100
1520	0.305	0.695	0.0710	0.268	294	98.1	170	614	1220
1680	0.323	0.677	0.0640	0.297	326	109	188	679	1350
1870	0.340	0.660	0.0578	0.329	362	121	209	756	1500
2070	0.356	0.644	0.0521	0.364	400	133	231	837	1660
2290	0.373	0.627	0.0471	0.404	444	148	256	925	1840
2540	0.390	0.610	0.0425	0.447	492	164	284	1030	2040
2810	0.407	0.593	0.0383	0.496	545	182	315	1140	2260
3110	0.424	0.576	0.0346	0.549	604	201	348	1260	2500
3450	0.442	0.558	0.0312	0.608	669	223	386	1390	2770
3820	0.460	0.540	0.0282	0.674	741	247	428	1540	3070
4240	0.479	0.521	0.0254	0.747	821	274	474	1710	3410
4690	0.498	0.502	0.0230	0.827	909	303	525	1900	3770
5200	0.518	0.482	0.0207	0.917	1010	336	582	2100	4180
5760	0.539	0.461	0.0187	1.02	1120	372	644	2330	4630
6380	0.561	0.439	0.0169	1.13	1240	412	714	2580	5130
7070	0.585	0.415	0.0152	1.25	1370	457	791	2860	5680
7840	0.610	0.390	0.0137	1.38	1520	506	877	3170	6300
8680	0.635	0.365	0.0124	1.53	1680	561	971	3510	6980
9620	0.661	0.339	0.0112	1.70	1860	621	1080	3890	7730

Company: University of North Dakota

Well:

Aquistore

File:

HOU-140757

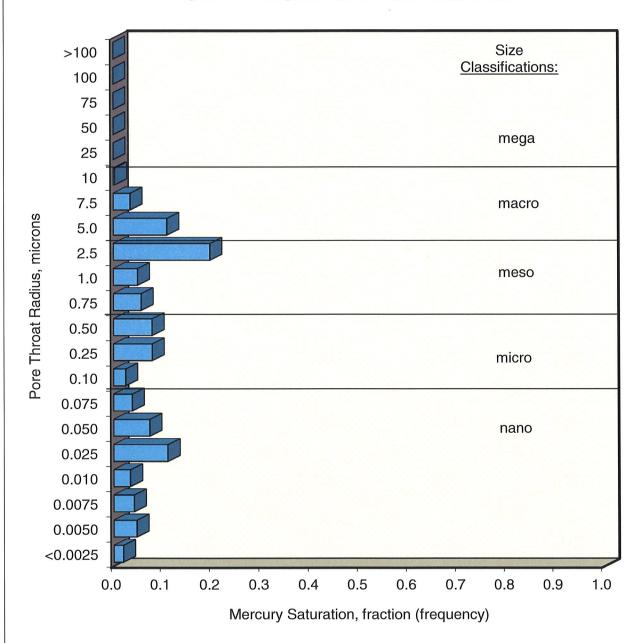
Sample:	S6 #118652-2m	un-	Host	Plug
Depth, meters:	2104.70	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	
Permeability to	Air, md:	N/A		-
Swanson Perm	neability, md:	0.00473	-	-
Porosity, fraction	on:	0.052	-	

maximum Sb/Pc, fraction:

0.00122

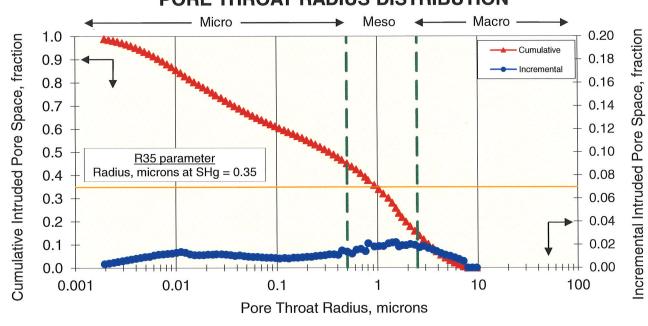
R35, microns:

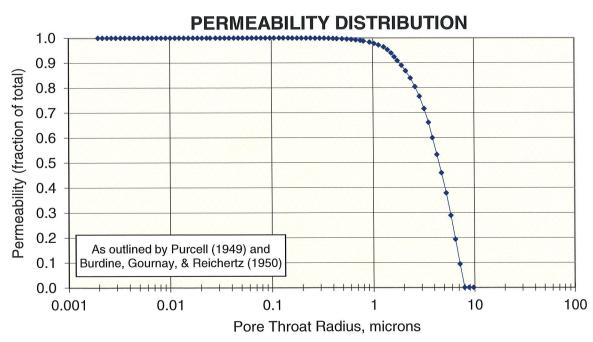
0.0542

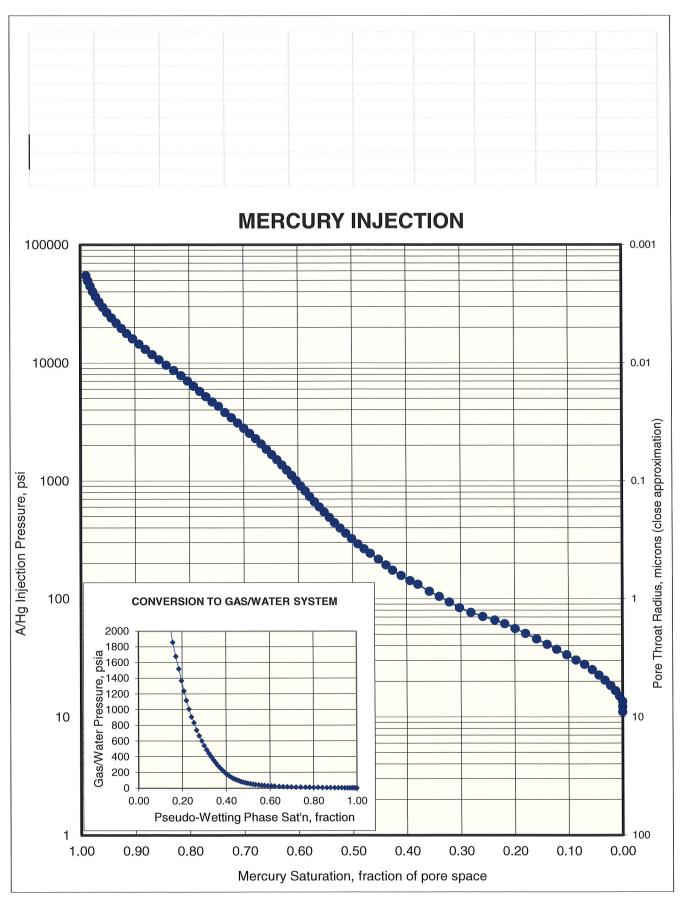

R50 (median pore throat radius):

0.0228

Injection	Mercury	Pseudo- Wetting	Pore Throat		Conversion to other Laboratory			Estimate Above	d Height Free
Pressure,	Saturation,	Saturation,	Radius,	J	Fluid Systems, psia			Water, feet	
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
10700	0.687	0.313	0.0101	1.88	2070	689	1190	4320	8600
11800	0.714	0.286	0.00912	2.08	2290	763	1320	4770	9480
13100	0.740	0.260	0.00823	2.31	2540	845	1460	5290	10500
14500	0.766	0.234	0.00743	2.56	2810	937	1620	5860	11700
16100	0.791	0.209	0.00671	2.83	3110	1040	1800	6510	12900
17800	0.814	0.186	0.00605	3.14	3450	1150	1990	7190	14300
19700	0.835	0.165	0.00546	3.48	3820	1270	2210	7960	15800
21900	0.856	0.144	0.00493	3.85	4240	1410	2450	8850	17600
24200	0.875	0.125	0.00445	4.27	4690	1560	2710	9780	19500
26800	0.893	0.107	0.00402	4.73	5200	1730	3000	10800	21500
29700	0.910	0.090	0.00362	5.24	5760	1920	3330	12000	23900
32900	0.926	0.074	0.00327	5.81	6380	2130	3690	13300	26400
36500	0.940	0.060	0.00295	6.43	7070	2360	4080	14800	29300
40400	0.952	0.048	0.00266	7.13	7840	2610	4520	16300	32500
44800	0.962	0.038	0.00241	7.90	8680	2890	5010	18100	36000
49600	0.971	0.029	0.00217	8.75	9620	3210	5550	20000	39900
55000	0.979	0.021	0.00196	9.69	10700	3550	6150	22200	44200


Company:	University of North Dakota	Sample:	S5 #1	18649-2m	un-	Host Plug	
Well:	Aquistore	Depth, meters: 2103.4		2103.40	stressed	n/a	n/a
File: HOU-1407	HOU-140757	Klinkenberg	N/A	-	-		
		Permeability	to Air, r	N/A	-	-	
		Swanson Pe	1.92	-	-		
		Porosity, fra	0.117	-	-		
		maximum S	b/Pc, fra	ction:	0.0426		
		R35, micron	0.973				
		R50 (median	0.334				


PORE THROAT SIZE HISTOGRAM



Company:	University of North Dakota	Sample:	S5 #118	8649-2m	un-	Host	Plug
Well:	Aquistore	Depth, meters: 2103		2103.40	stressed	n/a	n/a
File:	HOU-140757	Klinkenberg	Permeabili	N/A	-	-	
		Permeability	to Air, md	N/A	-	-	
		Swanson Pe	rmeability,	1.92	-	-	
		Porosity, fra		0.117	-	-	
		maximum S	b/Pc, fracti	0.0426			
		R35, microns	s:	0.973			
		R50 (median p	ore throat ra	0.334			

PORE THROAT RADIUS DISTRIBUTION

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S5 #118649-2m	un-	Host	Plug
Depth, meters:	2103.40	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A		-
Permeability to	Air, md:	N/A	-	-
Swanson Perm	neability, md:	1.92	-	
Porosity, fraction	on:	0.117	•	-

maximum Sb/Pc, fraction: 0.0426 R35, microns: 0.973 R50 (median pore throat radius): 0.334

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J		Conversion other Labora id Systems,	itory	Above	d Height Free r, feet
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W
44 A	0.000	1 000	0.70	0.0000	0.45	0.740	4.04	4.40	0.00
11.1	0.000	1.000	9.72	0.0262	2.15	0.716	1.24	4.49	8.92
12.3	0.000	1.000	8.79	0.0290	2.38	0.792	1.37	4.97	9.89
13.6	0.000	1.000	7.93	0.0321	2.63	0.877	1.52	5.50	10.9
15.0	0.006	0.994	7.16	0.0356	2.91	0.972	1.68	6.06	12.1
16.7	0.013	0.987	6.46	0.0394	3.23	1.08	1.87	6.75	13.4
18.5	0.022	0.978	5.84	0.0436	3.58	1.19	2.07	7.48	14.9
20.5	0.032	0.968	5.27	0.0484	3.96	1.32	2.29	8.28	16.5
22.7	0.044	0.956	4.74	0.0538	4.41	1.47	2.54	9.17	18.2
25.2	0.056	0.944	4.28	0.0595	4.88	1.63	2.82	10.2	20.3
27.9	0.071	0.929	3.86	0.0660	5.41	1.80	3.12	11.3	22.4
30.4	0.086	0.914	3.54	0.0719	5.89	1.96	3.40	12.3	24.4
33.7	0.103	0.897	3.20	0.0797	6.53	2.18	3.77	13.6	27.1
37.4	0.122	0.878	2.88	0.0883	7.24	2.41	4.18	15.1	30.1
41.3	0.140	0.860	2.61	0.0977	8.01	2.67	4.62	16.7	33.2
45.9	0.159	0.841	2.35	0.109	8.89	2.96	5.13	18.5	36.9
51.0	0.180	0.820	2.11	0.121	9.88	3.29	5.70	20.6	41.0
56.2	0.199	0.801	1.92	0.133	10.9	3.63	6.28	22.7	45.2
61.7	0.219	0.781	1.75	0.146	12.0	3.99	6.90	24.9	49.6
66.2	0.237	0.763	1.63	0.157	12.8	4.28	7.41	26.8	53.2
71.0	0.259	0.741	1.52	0.168	13.8	4.59	7.94	28.7	57.1
77.0	0.281	0.719	1.40	0.182	14.9	4.97	8.61	31.1	61.9
84.3	0.302	0.698	1.28	0.199	16.3	5.44	9.43	34.1	67.8
94.2	0.321	0.679	1.14	0.223	18.2	6.08	10.5	38.1	75.7
105	0.340	0.660	1.03	0.248	20.3	6.77	11.7	42.4	84.4
116	0.358	0.642	0.927	0.275	22.5	7.51	13.0	46.9	93.2
133	0.379	0.621	0.808	0.315	25.8	8.62	14.9	53.8	107
143	0.394	0.606	0.754	0.338	27.7	9.24	16.0	57.8	115
158	0.410	0.590	0.681	0.374	30.6	10.2	17.7	63.9	127
175	0.426	0.574	0.615	0.414	33.9	11.3	19.6	70.7	141
194	0.438	0.562	0.554	0.460	37.7	12.6	21.8	78.4	156
217	0.452	0.548	0.497	0.512	42.0	14.0	24.2	87.7	174
244	0.467	0.533	0.441	0.577	47.3	15.8	27.3	98.6	196
266	0.478	0.522	0.405	0.628	51.5	17.2	29.7	108	214
293	0.490	0.510	0.367	0.694	56.9	19.0	32.8	118	236

Company: University of North Dakota

Well: Aquistore File: HOU-140757

Sample:	S5 #118649-2m	un-	Host	Plug
Depth, meters:	2103.40	stressed	n/a	n/a
Klinkenberg Pe	ermeability, md:	N/A	-	-
Permeability to	Air, md:	N/A	-	-
Swanson Perm	neability, md:	1.92	-	-
Porosity, fraction	on:	0.117	-	

maximum Sb/Pc, fraction: 0.0426 R35, microns: 0.973 R50 (median pore throat radius): 0.334

Injection Pressure,	Mercury Saturation,	Pseudo- Wetting Saturation,	Pore Throat Radius,	J	to o	Conversior ther Labora d Systems,	atory	Estimated Height Above Free Water, feet		
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W	
325	0.501	0.499	0.331	0.769	63.0	21.0	36.4	131	261	
361	0.512	0.488	0.299	0.853	69.9	23.3	40.4	146	290	
399	0.523	0.477	0.270	0.944	77.4	25.8	44.7	161	321	
444	0.533	0.467	0.243	1.05	86.0	28.7	49.7	179	357	
491	0.542	0.458	0.220	1.16	95.1	31.7	54.9	198	395	
544	0.552	0.448	0.198	1.29	106	35.2	60.9	220	437	
603	0.561	0.439	0.179	1.42	117	38.9	67.4	244	485	
668	0.570	0.430	0.161	1.58	129	43.2	74.7	270	537	
740	0.579	0.421	0.146	1.75	143	47.8	82.8	299	595	
821	0.587	0.413	0.131	1.94	159	53.1	91.9	332	660	
909	0.596	0.404	0.119	2.15	176	58.7	102	367	731	
1010	0.604	0.396	0.106	2.39	196	65.4	113	408	812	
1120	0.612	0.388	0.0965	2.64	216	72.1	125	453	900	
1240	0.621	0.379	0.0871	2.92	240	79.9	138	501	997	
1370	0.630	0.370	0.0786	3.24	266	88.6	153	554	1100	
1520	0.639	0.361	0.0709	3.59	294	98.1	170	614	1220	
1680	0.649	0.351	0.0640	3.98	326	109	188	679	1350	
1860	0.658	0.342	0.0578	4.41	361	120	209	752	1500	
2070	0.668	0.332	0.0521	4.89	401	134	231	837	1660	
2290	0.678	0.322	0.0471	5.41	444	148	256	925	1840	
2540	0.689	0.311	0.0425	6.00	492	164	284	1030	2040	
2810	0.700	0.300	0.0383	6.65	545	182	314	1140	2260	
3110	0.711	0.289	0.0346	7.36	603	201	348	1260	2500	
3450	0.723	0.277	0.0312	8.16	669	223	386	1390	2770	
3820	0.735	0.265	0.0282	9.04	741	247	428	1540	3070	
4320	0.747	0.253	0.0250	10.2	837	279	483	1750	3470	
4690	0.758	0.242	0.0230	11.1	909	303	525	1900	3770	
5200	0.770	0.230	0.0207	12.3	1010	336	582	2100	4180	
5760	0.781	0.219	0.0187	13.6	1120	372	645	2330	4630	
6380	0.792	0.208	0.0169	15.1	1240	412	714	2580	5130	
7070	0.803	0.197	0.0152	16.7	1370	457	791	2860	5680	
7840	0.815	0.185	0.0137	18.5	1520	506	877	3170	6300	
8680	0.829	0.171	0.0124	20.5	1680	561	972	3510	6980	
9620	0.843	0.157	0.0112	22.7	1860	622	1080	3890	7730	

Company: University of North Dakota

Well:

Aquistore

File:

HOU-140757

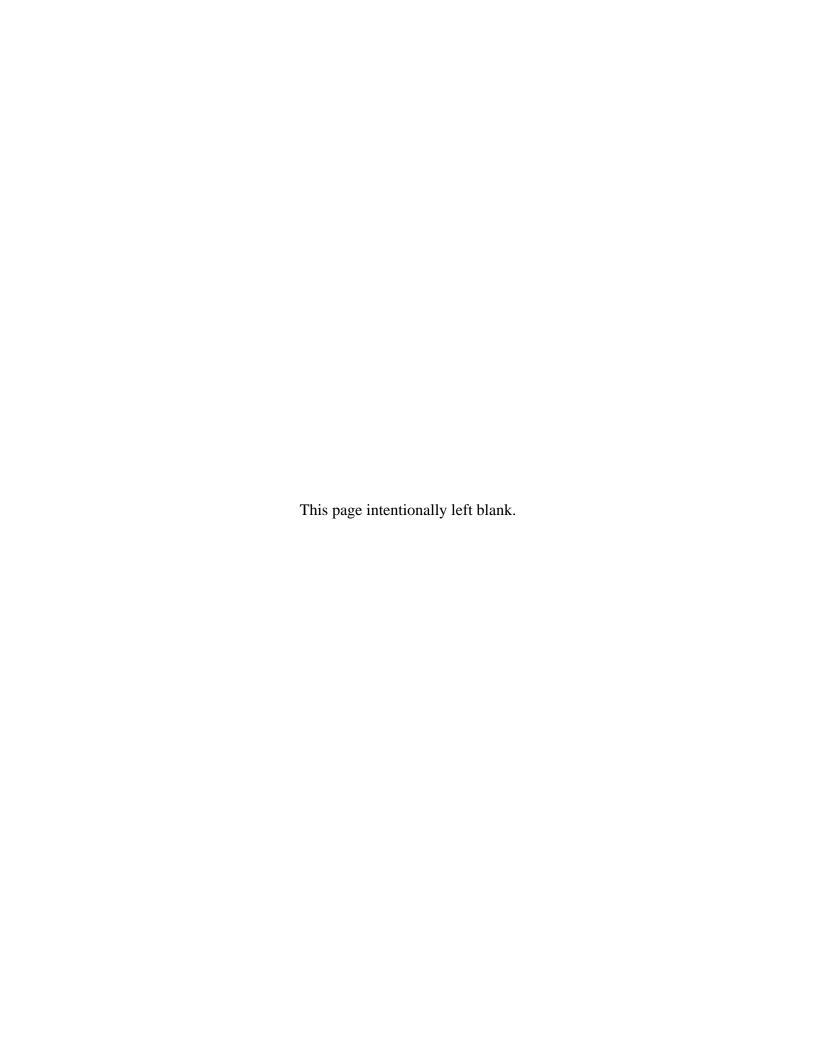
Sample:	S5 #118649-2m	un-	un- Host Pl				
Depth, meters:	2103.40	2103.40 stressed n/a		n/a			
Klinkenberg P	ermeability, md:	N/A	-	-			
Permeability t	o Air, md:	N/A	-	-			
Swanson Peri	meability, md:	1.92	-	-			
Porosity, fract	ion:	0.117	-	-			

maximum Sb/Pc, fraction:

0.0426

R35, microns:

0.973


R50 (median pore throat radius):

0.334

Injection	Mercury	Pseudo- Wetting	Pore Throat			Conversion			d Height Free		
Pressure,	Saturation,	Saturation,	Radius,	J					Water, feet		
psia	fraction	fraction	microns	Values	G-W	G-O	O-W	G-W	O-W		
					become a construction of the construction of t						
10700	0.856	0.144	0.0101	25.2	2070	689	1190	4320	8600		
11800	0.868	0.132	0.00912	27.9	2290	763	1320	4770	9480		
13100	0.881	0.119	0.00823	30.9	2540	845	1460	5290	10500		
14500	0.893	0.107	0.00743	34.3	2810	10 937		5860	11700		
16100	0.904	0.096	0.00671	38.0	3110	1040	1800	6510	12900		
17800	0.915	0.085	0.00605	42.1	3450	1150	1990	7190	14300		
19700	0.925	0.075	0.00546	46.6	3820	1270	2210	7960	15800		
21900	0.935	0.065	0.00493	51.7	4240	1410	2450	8850	17600		
24200	0.943	0.057	0.00445	57.3	4690	1560	2710	9780	19500		
26800	0.952	0.048	0.00402	63.4	5200	1730	3000	10800	21500		
29700	0.959	0.041	0.00362	70.3	5760	1920	3330	12000	23900		
32900	0.966	0.034	0.00327	77.9	6380	2130	3680	13300	26400		
36500	0.972	0.028	0.00295	86.3	7070	2360	4080	14800	29300		
40400	0.978	0.022	0.00266	95.6	7840	2610	4520	16300	32500		
44800	0.982	0.018	0.00241	106	8680	2890	5010	18100	36000		
49600	0.986	0.014	0.00217	117	9620	3210	5550	20000	39900		
55000	0.990	0.010	0.00196	130	10700	3550	6150	22200	44200		

APPENDIX C

CORE LABORATORIES TOC AND ROCK-EVAL SUMMARY REPORT

Source Rock Analysis

TOC, Kerogen Quality and Thermal Maturity Testing

Rock Eval 6

Version 4.09

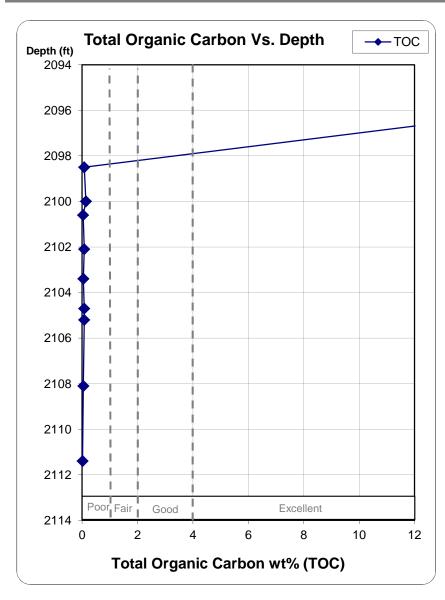
University of North Dakota

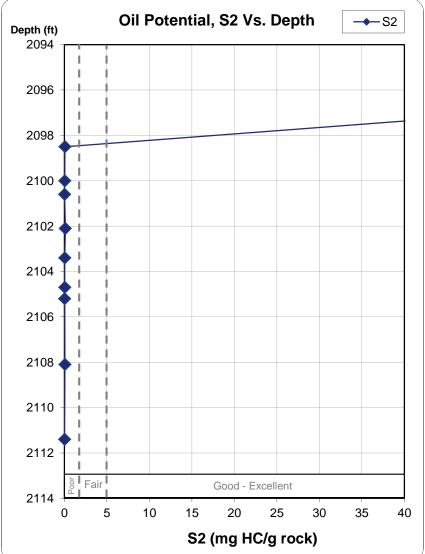
Aquistore
Upper & Middle Bakken
North Dakota

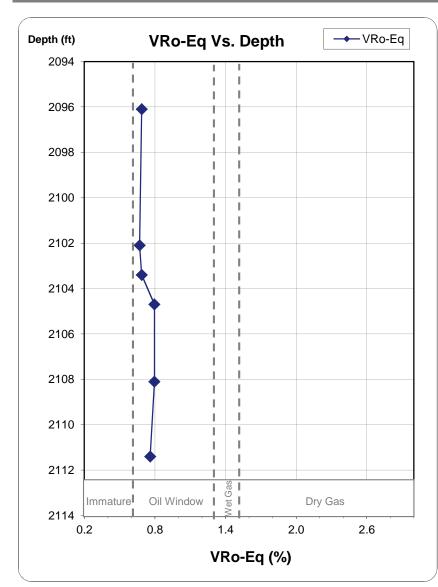
140757G-Extracted

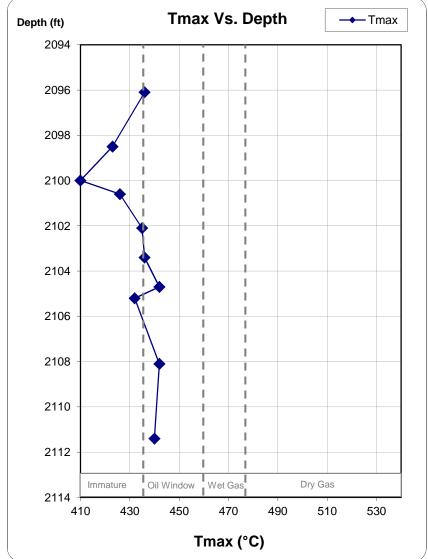
9/11/2014

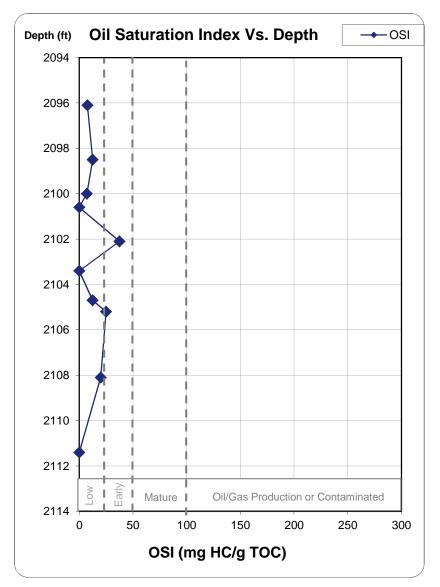
Core Laboratories 6316 Windfern Houston, TX 77040 713-328-2673

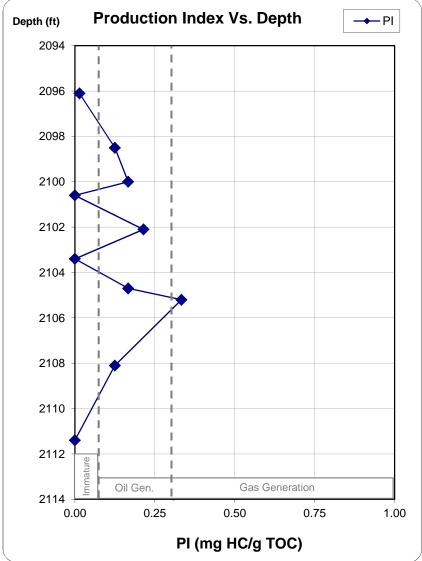

The analytical results, opinions, or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions, or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, express or implied, of any type, and expressly disclaims same as to the productivity, proper operations, or profitableness of any oil, gas, coal, or other mineral, property, well, or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories.

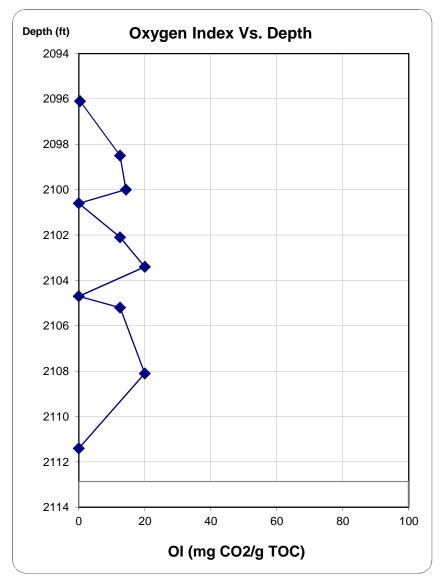

Source Rock Analysis Data Page

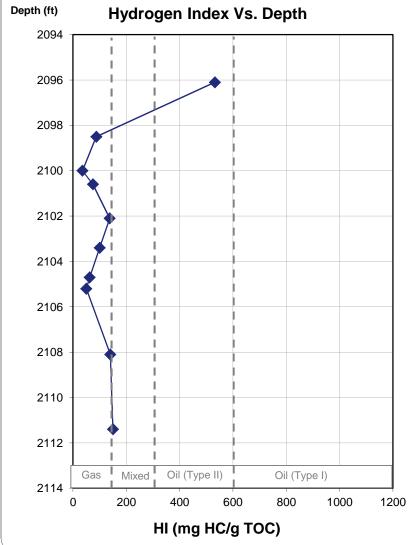

Well Name	Formation	Location	Sample	Depth	Sample Wt.	TOC	S1	S2	S3 CO ₂	S3 CO	Tmax	HI	OI	PI	OSI	Oil From Kerogen	Gas From Kerogen	VRo-Eq (%)	Remarks
			ID	ft.	mg	wt%	mg HC/g	mg HC/g	mg CO2/g	mg CO/g	° C	S2x100/TOC	S3x100/TOC	S1/(S1+S2)	S1x100/TOC	bbl oil/ac-ft	mcf/ac-ft	Calculated	Comments
Aquistore	Upper Bakken	North Dakota	S11-118657	2096.1	20.8	15.89	1.21	84.57	0.06	0.23	436	532.22	0.38	0.01	7.61	1851.24	11107.42	0.69	
Aquistore	Middle Bakken	North Dakota	S1-118645-2	2098.5	60.7	0.08	0.01	0.07	0.01	0	423	87.50	12.50	0.13	12.50	1.53	9.19		*Unreliable Tmax
Aquistore	Middle Bakken	North Dakota	S2-118646-2	2100	60.3	0.14	0.01	0.05	0.02	0.03	410	35.71	14.29	0.17	7.14	1.09	6.57		*Unreliable Tmax
Aquistore	Middle Bakken	North Dakota	S3-118647-2	2100.6	60.7	0.04	0	0.03	0	0	426	75.00	0.00	0.00	0.00	0.66	3.94		*Unreliable Tmax
Aquistore	Middle Bakken	North Dakota	S4-118648-2	2102.1	60.6	0.08	0.03	0.11	0.01	0.01	435	137.50	12.50	0.21	37.50	2.41	14.45	0.67	S2 shoulder (s)
Aquistore	Middle Bakken	North Dakota	S5-118649-2	2103.4	60.5	0.05	0	0.05	0.01	0	436	100.00	20.00	0.00	0.00	1.09	6.57	0.69	S2 shoulder (s)
Aquistore	Middle Bakken	North Dakota	S6-118649-2	2104.7	60.8	0.08	0.01	0.05	0	0.01	442	62.50	0.00	0.17	12.50	1.09	6.57	0.80	S2 shoulder (s)
Aquistore	Middle Bakken	North Dakota	S7-118653	2105.2	60.1	0.08	0.02	0.04	0.01	0	432	50.00	12.50	0.33	25.00	0.88	5.25		*Unreliable Tmax
Aquistore	Middle Bakken	North Dakota	S8-118654-2	2108.1	60.4	0.05	0.01	0.07	0.01	0.02	442	140.00	20.00	0.13	20.00	1.53	9.19	0.80	S2 shoulder (s)
Aquistore	Middle Bakken	North Dakota	S9-118655	2111.4	60.7	0.02	0	0.03	0	0	440	150.00	0.00	0.00	0.00	0.66	3.94	0.76	S2 shoulder (s)
nreliable Tmax due to I	low S2 yields (below relial	ble detection limit)																	

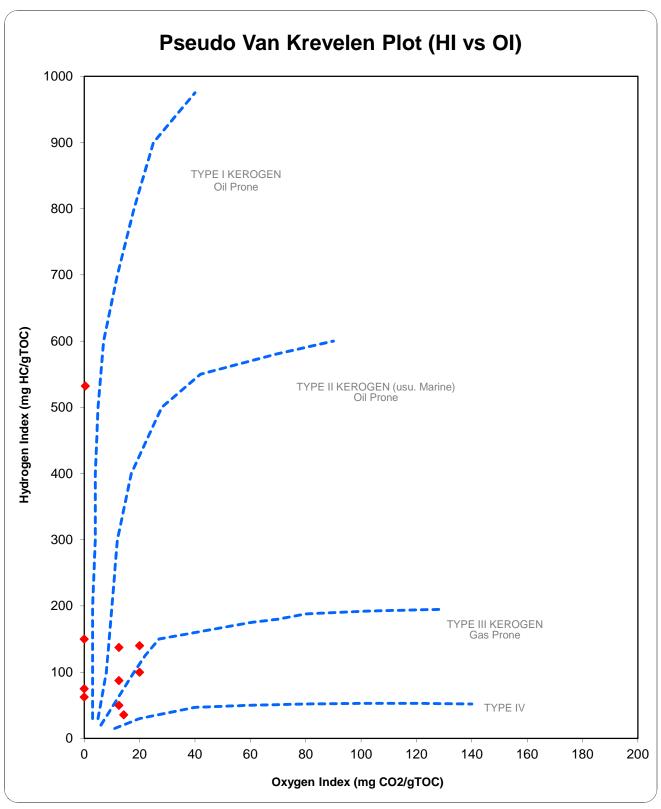


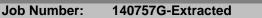


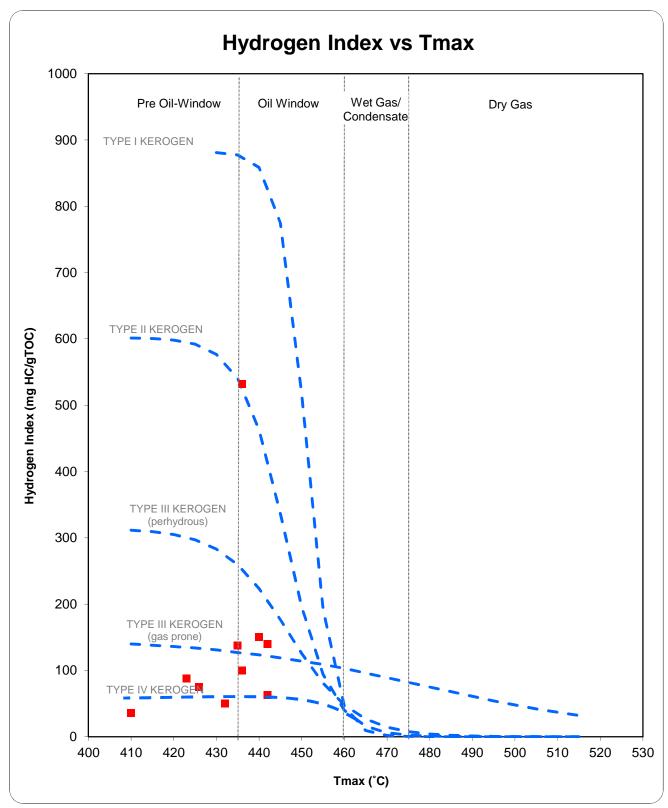




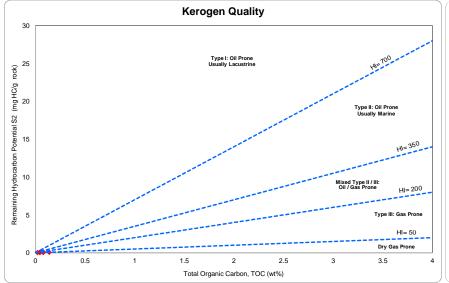


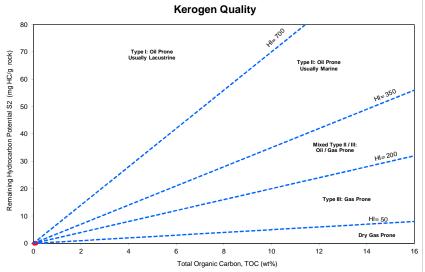


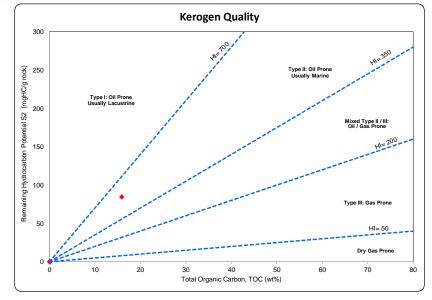


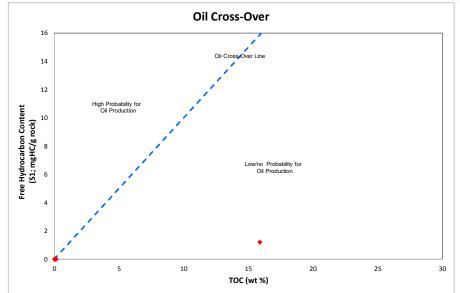


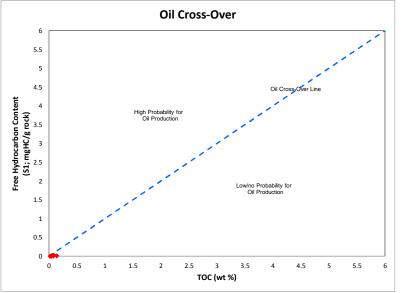
Well Name:


Aquistore



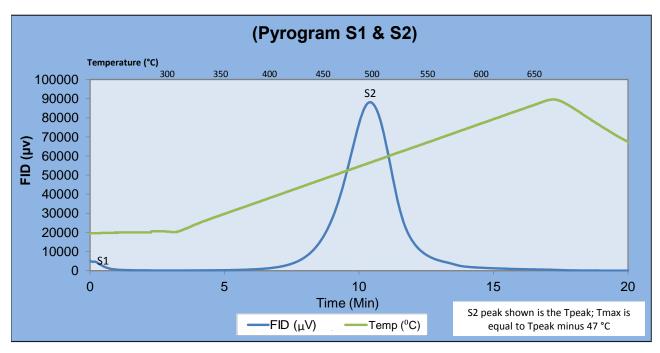


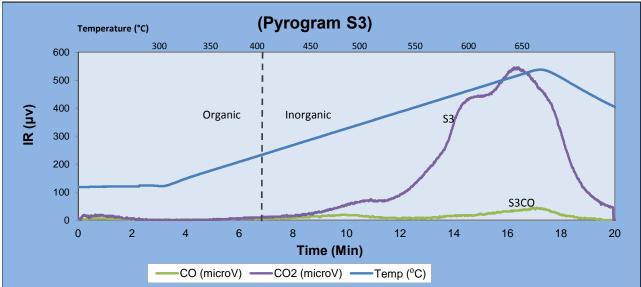




S11-118657

Company: University of North Dakota


Well: Aquistore Location: North Dakota

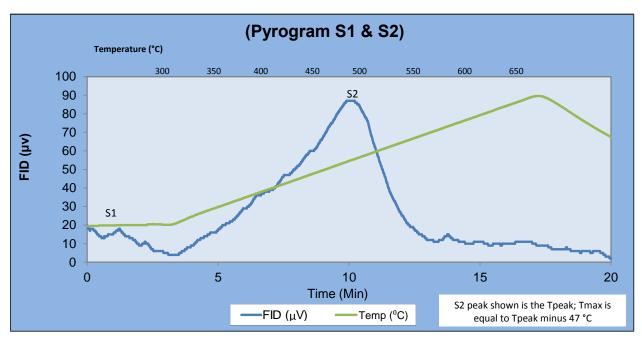


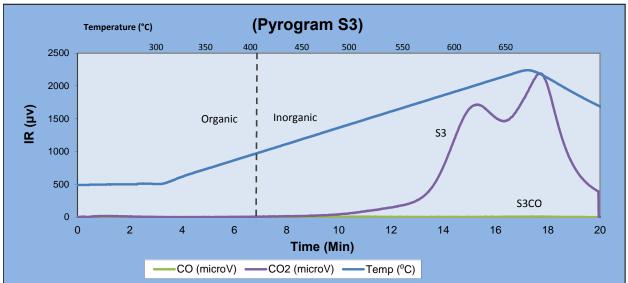
Job: 140757G-Extracted

Depth: 2096.10

Formation: Upper Bakken

S1-118645-2

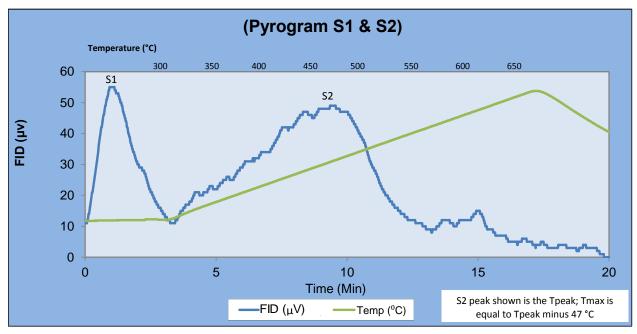

Company: University of North Dakota

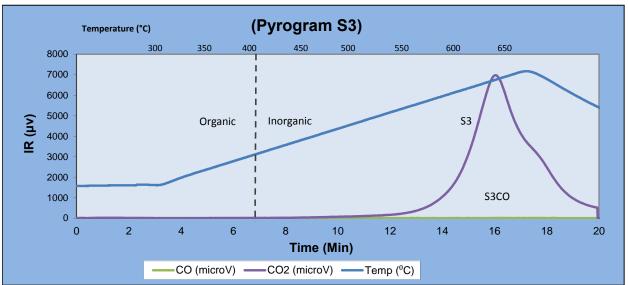

Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2098.50

S2-118646-2

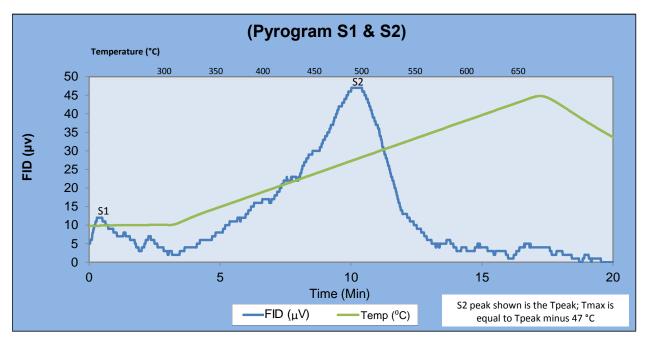

Company: University of North Dakota

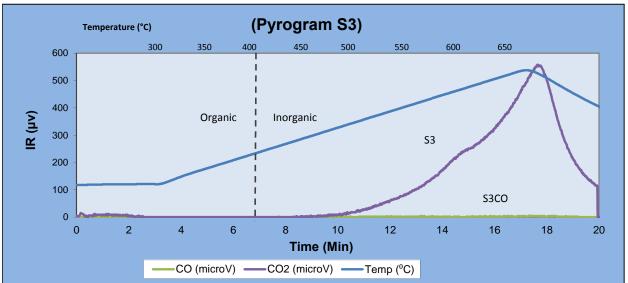

Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2100.00

S3-118647-2

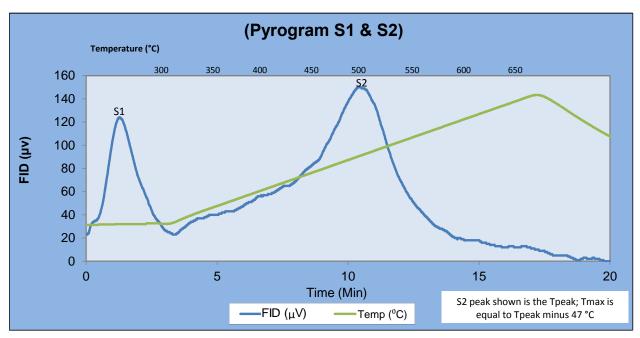

Company: University of North Dakota

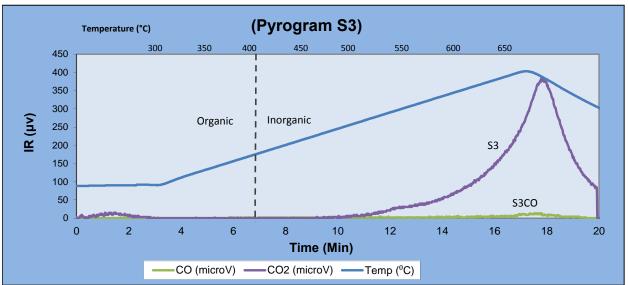

Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2100.60

S4-118648-2

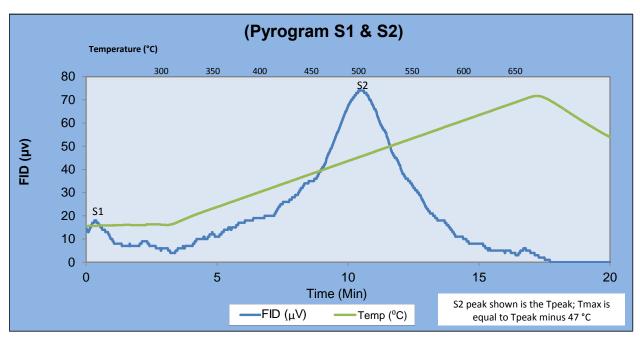

Company: University of North Dakota

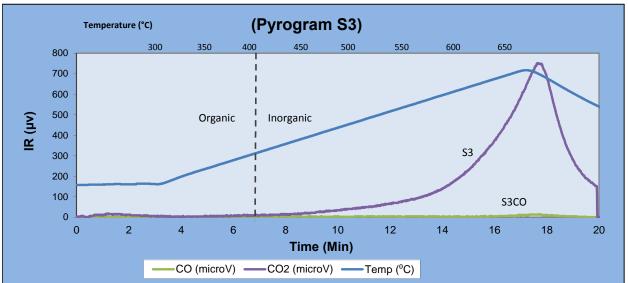

Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2102.10

S5-118649-2

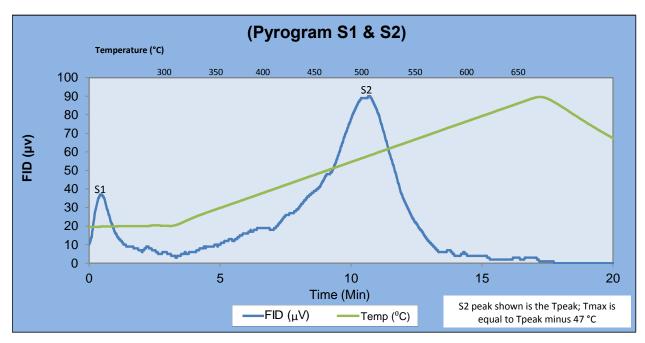

Company: University of North Dakota


Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2103.40

S6-118649-2

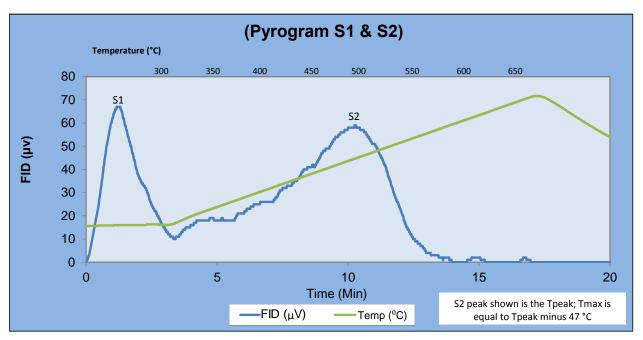

Company: University of North Dakota

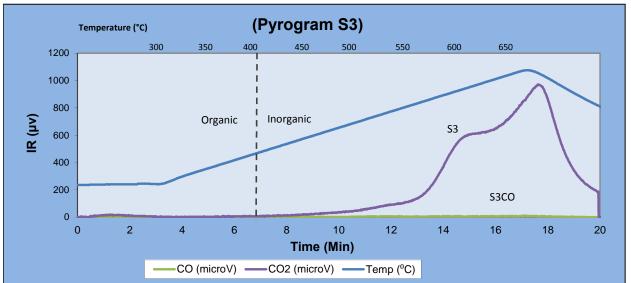
Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2104.70

S7-118653

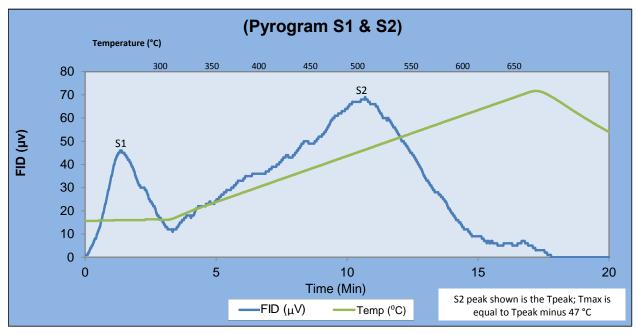

Company: University of North Dakota

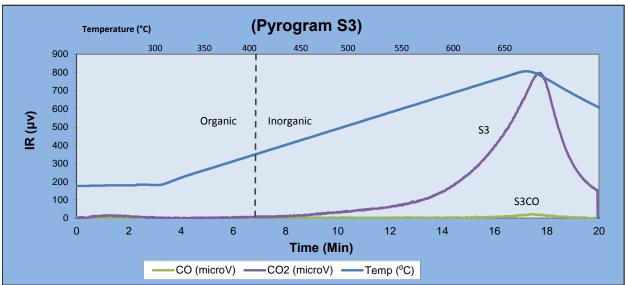

Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2105.20

S8-118654-2

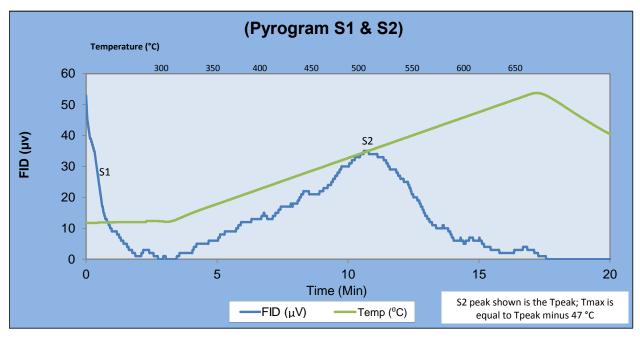

Company: University of North Dakota

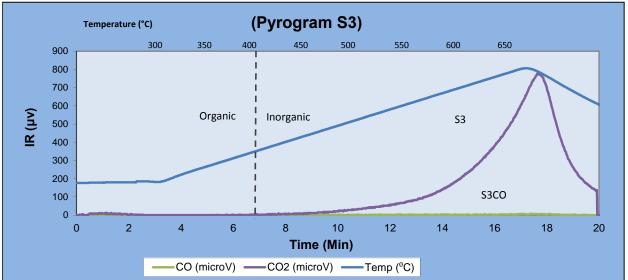

Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2108.10

S9-118655


Company: University of North Dakota


Well: Aquistore Location: North Dakota

Job: 140757G-Extracted

Depth: 2111.40

