

REGIONAL EMISSIONS AND CAPTURE OPPORTUNITIES ASSESSMENT – PLAINS CO₂ REDUCTION (PCOR) PARTNERSHIP (PHASE II)

Value-Added Report Prepared for:

Andrea T. McNemar

U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880

Cooperative Agreement No. DE-FC26-05NT42592

Prepared by:

Melanie D. Jensen Brandon M. Pavlish Peng Pei Kerryanne M.B. Leroux Edward N. Steadman John A. Harju

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

2010-EERC-08-15 December 2009 Approved

This report replaces Deliverable D44 entitled "Plains CO₂ Reduction (PCOR) Partnership (Phase II) Task 9 Deliverable D44 – Best Practice Manual: Regional Sequestration Opportunities," which was submitted to DOE on July 31, 2008.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report is available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.

EERC DISCLAIMER

LEGAL NOTICE This research report was prepared by the Energy & Environmental Research Center (EERC), an agency of the University of North Dakota, as an account of work sponsored by the U.S. Department of Energy. Because of the research nature of the work performed, neither the EERC nor any of its employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement or recommendation by the EERC.

TABLE OF CONTENTS

LIST OF FIGURES	iii
LIST OF TABLES	v
EXECUTIVE SUMMARY	vi
INTRODUCTION	1
REGIONAL SOURCE TYPES	2
COST OF CAPTURING CO ₂ IN THE PCOR PARTNERSHIP REGION	5
Overview of Capture Technologies.	
Absorption Processes	
Application of Chemical Absorption Technology to PCOR Partnership Point So	urces 9
THE COST OF CO ₂ CAPTURE	10
Ethanol Plants	11
CO ₂ Emission Reduction Potential	12
Energy Consumption During Capture of CO ₂ from the PCOR	
Partnership Region's Ethanol Plants	12
Extent and Cost of CO ₂ Capture at Ethanol Plants in the PCOR	
Partnership Region	13
Gas-Processing Facilities	15
CO ₂ Emission Reduction Potential	15
Electric Utilities	17
CO ₂ Emission Reduction Potential	17
Regional Summary of CO ₂ Emission Reduction Potential	17
Energy Consumption During CO ₂ Capture	21
Extent and Cost of CO ₂ Capture at Electric Utilities Within the PCOR	
Partnership Region.	25
THE COST OF TRANSPORTING CO2 TO A GEOLOGIC SEQUESTRATION SITE	E 30
TOTAL COST OF WIDE-SCALE CCS DEPLOYMENT IN THE PCOR	
PARTNERSHIP REGION	34
SUMMARY AND CONCLUSIONS	36
REFERENCES	38
MODEL SIMULATIONS OF THE CAPTURE OF CO ₂ FROM ELECTRICITY-GENERATING STATIONS FOR EACH STATE OR PROVINCE WITHIN THE PCOR PARTNERSHIP REGION	appendix A

TABLE OF CONTENTS (continued)

PROCEDURES USED TO ESTIMATE CAPTURE, DRYING, AND	
COMPRESSION COSTS AT ETHANOL PLANTS AND ELECTRICITY-	
GENERATING FACILITIES	Appendix B
COMPARISON OF COSTS AND ADDITIONAL ELECTRICAL	
REQUIREMENTS FOR CO ₂ CAPTURE FROM ETHANOL PLANTS	Appendix C
DATA USED TO GENERATE CHARTS SUMMARIZING CO ₂ CAPTURE	
AT ELECTRICITY-GENERATING FACILITIES	Appendix D
SUMMARY OF CO ₂ PIPELINE ROUTES FOR THE PCOR PARTNERSHIP	
STATES AND PROVINCES	Appendix E

LIST OF FIGURES

I	stationary CO ₂ sources	3
2	Number of CO ₂ sources for each state or province, broken down by major source category	4
3	CO ₂ emissions for each state or province, broken down by major source category	5
4	CO ₂ capture technology options.	6
5	Generic liquid scrubbing system for CO ₂ capture	7
6	Percentage of CO ₂ emissions from ethanol plants contributed by each state/province with at least one ethanol plant that produces >15,000 tons/yr	15
7	Summary of the total amount of MW considered for CO ₂ capture in each state or province	18
8	Total amount of CO ₂ produced (in MMtons/yr) by electricity-generating stations considered for CO ₂ capture on a state/province basis	19
9	Map showing the location and range of CO ₂ emissions of the electricity-generating stations larger than 100 MW in the PCOR Partnership region	20
10	Graphical summary of the costs and energy penalty associated with implementation of CO ₂ capture at electricity-generating stations larger than 100 MW in the PCOR Partnership region.	23
11	Total CO ₂ captured from all electric generation stations larger than 100 MW in the PCOR Partnership region	23
12	Replacement power capital cost as a function of CO ₂ capture rate for two power generation methods and their average	24
13	Comparison of CO ₂ capture cost for all of the states/provinces in the PCOR Partnership region on a dollars-per-ton-CO ₂ -captured basis for various capture rates.	26
14	Comparison of total annual CO ₂ capture cost for all of the states/provinces in the PCOR Partnership region for various capture rates	26
15	A comparison of the energy required for CO ₂ capture in each state/province in the PCOR Partnership region for various capture rates	27

LIST OF FIGURES (continued)

16	A comparison of the energy penalties incurred during CO ₂ capture for	
	each state/province in the PCOR Partnership region for various capture rates	28
17	Comparison of the total amount of CO ₂ that could be captured for each	
	state/province in the PCOR Partnership region for various capture rates	28
18	Comparison of the percentage of CO ₂ reduced from all electricity-generating	
	stations in each state/province in the PCOR Partnership region when CO ₂ capture	
	is implemented at the large (100 MW+) electricity-generating stations	29
19	Comparison of the percentage of CO ₂ reduced from all sources by implementing	
	CO ₂ capture at the large (100 MW+) electric generating stations for each	
	state/province within the PCOR Partnership region	30
20	The illustrative PCOR Partnership pipeline network routes	33

LIST OF TABLES

1	Common Applications for CO ₂ Capture Technologies	6
2	Various PCOR Partnership Industries and Their Capture Technology Matches	10
3	Energy Required to Capture CO ₂ from Ethanol Plants	13
4	Ranges of Costs to Capture, Dry, and Compress CO ₂ Produced at the PCOR Partnership Region's Ethanol Plants	14
5	Total Annual Cost to Capture CO ₂ at the PCOR Partnership's Ethanol Plants	14
6	CO ₂ Produced During Gas-Processing Activities in the PCOR Partnership Region	16
7	Energy Required and Cost Associated with Drying and Compression of the CO ₂ Produced During Natural Gas-Processing Activities	17
8	Summary of Results for Implementing CO ₂ Capture on Electricity-Generating Stations Larger than 100 MW	22
9	EIA Assumed Capital Costs of New Electricity-Generating Stations	25
10	Geologic Sinks in Closest Proximity to PCOR Partnership CO ₂ Point Sources	31
11	Regional Pipeline Network Summary	32
12	Annualized Cost of Various CCS Scenarios in the PCOR Partnership Region	35
13	Estimated Increases in COE Due to Capture of CO ₂	36

REGIONAL EMISSIONS AND CAPTURE OPPORTUNITIES ASSESSMENT – PLAINS CO₂ REDUCTION (PCOR) PARTNERSHIP (PHASE II)

Melanie D. Jensen, Energy & Environmental Research Center Brandon M. Pavlish, Energy & Environmental Research Center Peng Pei, Energy & Environmental Research Center Kerryanne M.B. Leroux, Energy & Environmental Research Center Edward N. Steadman, Energy & Environmental Research Center John A. Harju, Energy & Environmental Research Center

December 2009

EXECUTIVE SUMMARY

The PCOR Partnership region is expansive, covering the states of Iowa, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, Wisconsin, the Powder River Basin portion of the states of Montana and Wyoming, and the Canadian provinces of Alberta, Saskatchewan, Manitoba, and the northeastern corner of British Columbia. The geographic and socioeconomic diversity of the region is reflected in the variable nature of the carbon dioxide (CO₂) sources found there. Over 925 point sources emitting at least 15,000 short tons/yr have been identified for the PCOR Partnership region. The CO₂ is emitted during electricity generation; energy exploration and production activities; agriculture; fuel, chemical, and ethanol production; and various manufacturing and industrial activities. The majority of the region's emissions come from just a few source types.

While the CO₂ emissions from the individual PCOR Partnership point sources are similar to those from sources located around the United States, the wide range of source types within the PCOR Partnership region offers the opportunity to evaluate the capture, separation, and transportation of CO₂ in many different scenarios. The earliest deployment is likely to feature the capture, dehydration, compression, and pipeline transportation of CO₂ from the "easiest" sources: primarily gas-processing plants and the fermentation step of ethanol plants. This will likely be followed by capture, dehydration, compression, and pipeline transportation of the CO₂ produced during coal combustion at the region's electricity generation facilities, as these are the largest sources of CO₂ in the region.

Several processes have been or are being developed to separate and remove CO₂ from flue gas streams, with selection of a particular technology based primarily upon the pressure and concentration of CO₂ in the gas stream. The technology that is most likely to be employed for capture at the electrical power-generating stations and other industrial applications is chemical absorption. Amine scrubbing will probably be used as it is a commercial (and, therefore, better-defined) technology, although some facilities may choose to apply an ammonia scrubbing system

to their gas streams. Amine scrubbing is typically used to separate CO₂ from raw natural gas at gas-processing plants. Amine scrubbing also would be applicable to capture of the CO₂ produced during combustion of either natural gas or coal at ethanol plants (if enough CO₂ could be captured to make its sequestration economical). In constrast, the CO₂ produced during the fermentation step at ethanol plants would require only dehydration and compression.

Employing CO₂ capture on a regionwide scale will require considerable energy and financial resources. The cost of capture required for the initial deployment of carbon sequestration in the PCOR Partnership region was estimated. Capture and compression costs and power requirements for ethanol plants, gas-processing plants, and electricity-generating facilities were estimated using the Integrated Environmental Control Model (IECM), a desktop computer model that was developed at Carnegie Mellon University with funding from the U.S. Department of Energy's National Energy Technology Laboratory. The IECM allows the systematic evaluation of monoethanolamine (MEA) scrubbing and various pollution control devices on electricity-generating facilities. While the IECM does not contain an ethanol or gas-processing plant module, Energy & Environmental Research Center researchers found it possible to configure the model in a manner that permitted prediction of these costs, thereby putting the ethanol, gas-processing, and power plant cost and power requirement estimations on the same basis and enabling valid comparisons. To determine the cost of retrofitting the region's electric generating stations with CO₂ capture capability, the IECM was used to estimate the costs and power requirements associated with adding an MEA scrubber system to the postcombustion side of all electric generating stations larger than 100 MW. A 100-MW cutoff limit was chosen primarily because the economics and power requirements of capturing CO₂ at units smaller than 100 MW would make electric generation at these units no longer feasible. In addition, the IECM has a lower estimation boundary level of 100 MW, meaning that values calculated using the IECM for units smaller than 100 MW may not depict the true costs and power requirements.

The route and cost of a regional pipeline network needed for early implementation of carbon capture were estimated using a pipeline-routing model developed by the Massachusetts Institute of Technology (MIT). The MIT model calculates pipeline diameter and identifies the least-cost path connecting a CO₂ source to a given sink. The pipeline network that was developed was solely for the purpose of estimating transportation infrastructure costs and is not intended to be an implementable pipeline system

This study estimated only the costs associated with capture, drying, compression, and transportation by pipeline to a geologic sink; injection costs at the sink or any monetary value assigned to the CO₂ have **not** been included in the cost or energy estimates. Drying and compression of the CO₂ produced by fermentation at the ethanol plants and at the gas-processing facilities, **without pipeline costs**, would average \$11/ton CO₂ captured. Including the cost of replacement power, the per-ton cost associated with capture, drying, and compression of 90% of the CO₂ produced at the region's power plants would be \$71/ton CO₂ avoided. The total cost of capture, drying/compression, replacement power, **and** pipeline transportation within the PCOR Partnership region was found to range from \$5.08 billion/year for the CO₂ produced at the gasprocessing plants and during fermentation at the ethanol plants (although the entire pipeline network, which is included in this cost, would probably not be constructed for these sources alone) to \$29.76 billion/yr for the ethanol plants' fermentation CO₂, the gas-processing CO₂, and

90% of the CO₂ produced by the electricity-generating stations of the region that are larger than 100 MW. On a per-ton basis, the second scenario would cost \$71/ton. These two scenarios would reduce the region's point-source CO₂ emissions by 7% and 61%, respectively.

The increase in the cost of producing electricity caused by the capture, compression, and transport of the CO₂ is estimated to be 34% to 189%. (The cost of producing electricity is only a portion of the retail cost of electricity paid by consumers.) Maximizing the value-added benefits associated with enhanced oil recovery as a means of CO₂ sequestration will help to offset these costs. Gaining experience through large-scale demonstrations and the earliest applications of CCS is likely to reduce the costs, as will improvements in existing capture technologies and development of new capture, compression, and pipeline concepts.

The estimated high cost of the capture, compression, and pipeline network required for effective implementation of CCS as a means to reduce CO₂ emissions illustrates that additional research for cost-effective capture and compression technologies and judicious siting of pipeline networks is necessary, if the approach is to be implemented with minimal financial hardship on the region's utilities, industries, and consumers.

REGIONAL EMISSIONS AND CAPTURE OPPORTUNITIES ASSESSMENT – PLAINS CO₂ REDUCTION (PCOR) PARTNERSHIP (PHASE II)

Melanie D. Jensen, Energy & Environmental Research Center Brandon M. Pavlish, Energy & Environmental Research Center Peng Pei, Energy & Environmental Research Center Kerryanne M.B. Leroux, Energy & Environmental Research Center Edward N. Steadman, Energy & Environmental Research Center John A. Harju, Energy & Environmental Research Center

December 2009

INTRODUCTION

This report presents a preliminary economic assessment of the most likely early wide-scale deployment of carbon sequestration in the PCOR Partnership region as a greenhouse gas management strategy. Included in the assessment are costs associated with capture, compression, and pipeline transport of the CO₂. The costs of injection at geologic sinks are **not** included nor is any monetary value that might be associated with the sale of the carbon dioxide (CO₂) for enhanced oil recovery (EOR) purposes.

The PCOR Partnership region is expansive, covering the states of Iowa, Minnesota, Missouri, Nebraska, North Dakota, South Dakota, Wisconsin, the Powder River Basin portion of the states of Montana and Wyoming, and the Canadian provinces of Alberta, Saskatchewan, Manitoba, and the northeastern corner of British Columbia. The upper Mississippi River Valley and the western shores of the Great Lakes are home to large coal-fired electrical generators that power the manufacturing plants and breweries of St. Louis, Minneapolis–St. Paul, and Milwaukee. Coal-fired power plants, natural gas-processing plants, ethanol plants, and refineries located in the prairies and badlands of the north-central United States and central Canada further fuel the industrial and domestic needs of cities throughout North America. The PCOR Partnership region is also home to much of the world's most fertile agricultural lands.

The geographic and socioeconomic diversity of the region is reflected in the variable nature of the CO₂ sources found there. Over 925 point sources emitting at least 15,000 short tons/yr have been identified for the PCOR Partnership region using various U.S. Environmental Protection Agency and Environment Canada databases. The CO₂ is emitted during the following:

- Electricity generation
- Energy exploration and production activities
- Agriculture

- Fuel and chemical production
- Ethanol production
- Various other manufacturing and industrial activities

The majority of the region's emissions come from just a few source types:

- Electricity generation, which makes up about two-thirds of the CO₂ emitted
- Ethanol production
- Petroleum refining
- Manufacture of paper and wood products
- Petroleum and natural gas processing
- Cement/clinker production
- Chemical and fuel production

While the CO_2 emissions from the individual PCOR Partnership point sources are no different from similar sources located around the United States, the wide range of source types within the PCOR Partnership region offers the opportunity to evaluate the capture, separation, and transportation of CO_2 in many different scenarios. The earliest deployment is likely to feature the capture, dehydration, compression, and pipeline transportation of CO_2 from the "easiest" sources: gas-processing facilities and the fermentation step of ethanol plants. This will probably be followed by capture, dehydration, compression, and pipeline transportation of the CO_2 produced during coal combustion at the region's electricity generation facilities as these are the largest sources of CO_2 in the region.

It is highly unlikely that CO₂ capture would be implemented at all of the region's ethanol, gas-processing, or electricity-generating plants simultaneously. The specific plants that will be the earliest adopters are not known at this time. The costs associated with capture, drying, compression, and transport of CO₂ from these facilities will likely be borne by the individual facilities.

Capture of CO₂ from coal combustion flue gas will be expensive in terms of both capture and parasitic load on the power plant. To recover a portion of this expense, the geologic storage that will be pursued first likely will be oil fields in which CO₂ can be used for EOR and would presumably have some monetary value. It is expected that wide-scale sequestration in brine formations will occur only after EOR opportunities have been exhausted. A network of pipelines capable of transporting the CO₂ to the various geologic storage sites will have to be constructed. Pipeline sizing and routing will need to be considered so that the network can accommodate increasing quantities of CO₂ while transporting CO₂ to the nearest EOR and/or brine formations.

REGIONAL SOURCE TYPES

As of December 1, 2009, the PCOR Partnership region contains 927 industrial or utility sources that each emit at least 15,000 short tons/yr CO₂. Total emissions from these sources is roughly 561,900,000 short tons/year CO₂. This figure does not include CO₂ emitted from commercial facilities (malls, schools, etc.), residential buildings, or complexes or during

transportation of people or goods. Relatively speaking, the PCOR Partnership region emits more CO₂ from electric utilities and less from industries than the rest of the United States, probably because the region is made up largely of agricultural and energy-producing areas and the majority of industrial activity is located primarily in the eastern reaches of the region. There are many smaller sources in the east and larger, more widely distributed sources in the west. This distribution of sources can be seen in Figure 1.

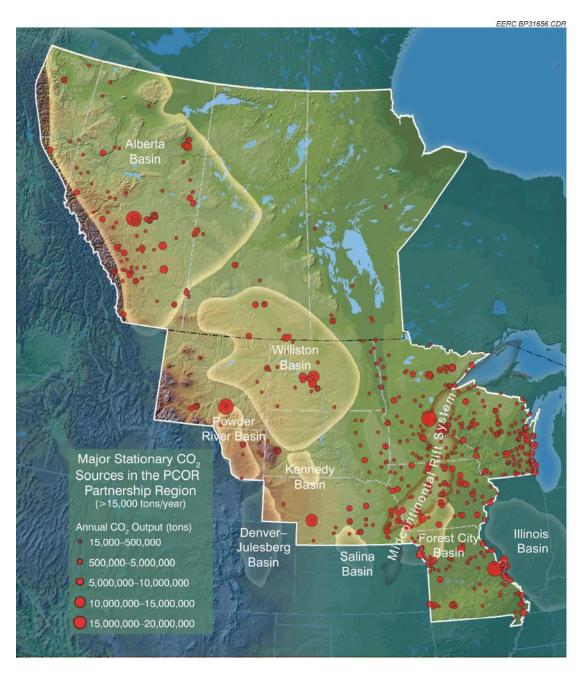


Figure 1. Location and relative output for the PCOR Partnership region's major stationary CO₂ sources.

A breakdown by state or province of the number of sources and amount of CO₂ emitted from each major source category is presented in Figures 2 and 3, respectively. The broad categories contain CO₂ emission sources from several areas. The agriculture-related category includes agricultural and animal processing as well as fertilizer and sugar production. The electricity generation category includes electricity generation and cogeneration. The ethanol/fuels production category includes ethanol production and the production of other fuels such as syngas and chemicals such as ammonia and asphalt. The petroleum- and natural gas-related category includes natural gas processing, natural gas storage facilities, natural gas transmission, combined petroleum and natural gas processing, petroleum processing, petroleum refining, and petroleum transmission. Other manufacturing/industrial activities include cement/clinker and lime production; paper and wood products manufacture; foundries; mining, ore, minerals, and metals processing; institutional and industrial heat and power production; and other manufacturing activities.

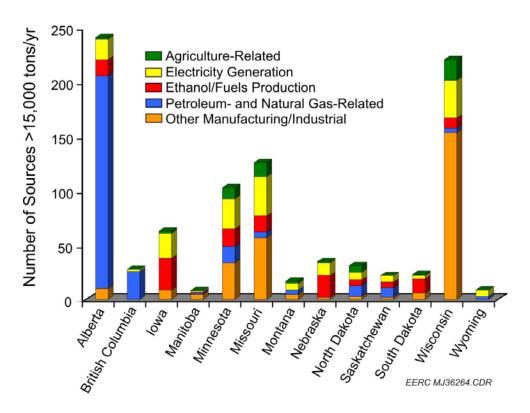


Figure 2. Number of CO₂ sources for each state or province, broken down by major source category (it should be noted that the values for British Columbia, Montana, and Wyoming are only for the portion of the state/province that lies within the PCOR Partnership region and are not necessarily representative of the total for those states/that province).

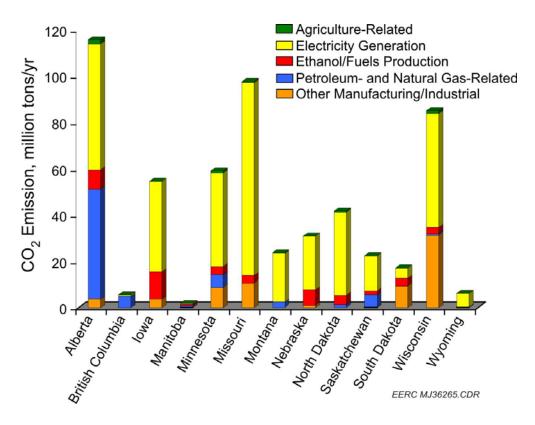


Figure 3. CO₂ emissions for each state or province, broken down by major source category (it should be noted that the values for British Columbia, Montana, and Wyoming are only for the portion of the state/province that lies within the PCOR Partnership region and are not necessarily representative of the total for those states/that province).

COST OF CAPTURING CO₂ IN THE PCOR PARTNERSHIP REGION

Overview of Capture Technologies

Several processes have been or are being developed to separate and remove CO₂ from flue gas streams, and these technology options are summarized in Figure 4. Selection of a particular technology is based primarily upon the pressure and concentration of CO₂ in the gas stream, as summarized in Table 1. Absorption is commercially available for high-volume, mixed-gas streams. Physical sorbents are ideal for gasification flue gas streams, whereas chemical sorbents are used to remove CO₂ from fossil fuel combustion systems. Adsorption can also be implemented for mixed-gas streams; however, no commercial systems are yet available. Membrane and cryogenic systems are ideal for smaller flow rates. Membranes may be applied to gasification or reforming flue gas streams, and cryogenic conditions benefit carbon capture from high CO₂ concentration streams.

A complete description of all of the various capture technologies that are either commercially available or under development is beyond the scope of this report. The PCOR Partnership produced a comprehensive overview in 2005 (Jensen et al., 2005); an updated

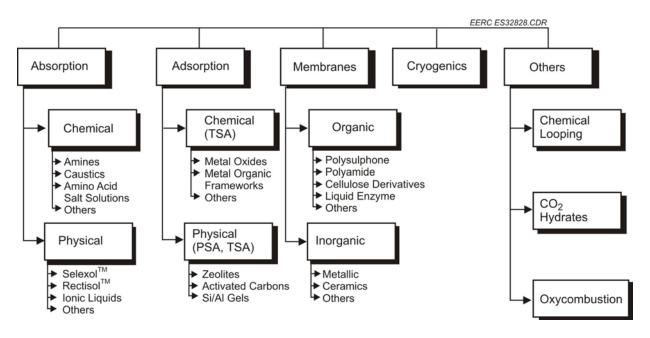


Figure 4. CO₂ capture technology options (PSA = pressure swing adsorption, TSA = temperature swing adsorption).

Table 1. Common Applications for CO₂ Capture Technologies

Technology	Application
Absorption	Commercial plants, mixed-gas streams
	Chemical – fossil fuel-fired systems, e.g., boilers, gas turbines
	Physical – gasification systems
Adsorption	Mixed-gas streams
Membranes	Gasification and reforming, flue gas
Cryogenics	High-concentration, mixed-gas streams

version of the document will be available in early 2010. However, background information regarding the technologies that are the most likely to be employed during early carbon capture and sequestration (CCS) activities within the PCOR Partnership region is provided in the following paragraphs.

Absorption Processes

Absorption processes are commonly used in commercial plants to remove CO₂ from mixed-gas streams over a wide range of pressures and CO₂ concentrations. Two types of solvents are typically used for CO₂ removal: physical solvents and chemically reactive solvents. Physical solvents dissolve CO₂ following Henry's law but do not react with it. Chemically reactive solvents first dissolve CO₂ and then react with it. Physical solvents are better suited to mixed-gas streams that are under high pressure, such as gasification systems. The elevated pressure increases CO₂ solubility which, in turn, reduces the solvent circulation rate. The physical solvent can be recovered by flashing off CO₂ at a lower pressure. Pressure does not affect the

performance of chemically reactive solvents. Chemically reactive solvents require heat to break the chemical bonds and separate the dissolved gas. Commercial experience has shown that the physical solvent process is more economical if the CO₂ partial pressure is above 200 psia. At low-inlet CO₂ partial pressure and where a very low outlet CO₂ concentration is required, chemically reactive solvent processes are more effective. Chemical absorption is applicable to nearly all of the region's point sources in which combustion occurs.

Liquid scrubbing is the most common form of chemical absorption technology used for carbon capture today. The most commonly employed liquid scrubbing solvents are alkanolamines. Alkanolamines used for CO₂ removal include monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA), disopropanolamine (DIPA), and triethanolamine (TEA). MEA scrubbing is currently considered to be the baseline carbon capture technology to which all other technologies (not only chemical absorbents) are compared.

 CO_2 removal through liquid chemical absorption is a straightforward process consisting primarily of two contacting towers (one for CO_2 absorption, one for CO_2 desorption/absorbent regeneration) and all of the necessary associated pumps, blowers, tanks, heat exchangers, etc. A schematic of a generic liquid scrubbing system is shown in Figure 5. Because the process uses processing equipment that is familiar to most industrial plant operators and engineers, liquid scrubbing will probably be reasonably well accepted at the facilities at which capture will occur. However, many of these facilities produce flue gas containing SO_x and NO_x that can react with the liquid absorbent to form heat-stable salts. For this reason, application of liquid scrubbing technology to a power plant or other industrial facility that emits CO_2 as a result of combustion

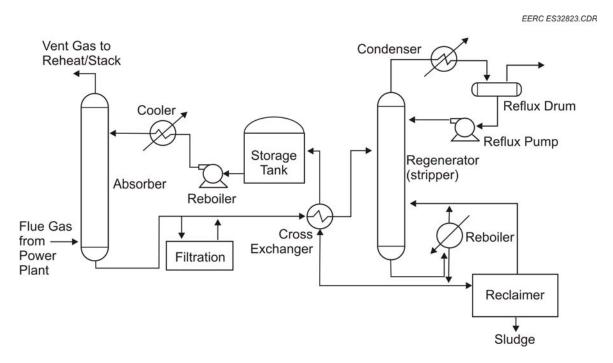


Figure 5. Generic liquid scrubbing system for CO₂ capture.

may require the installation of additional pollution control equipment to reduce the concentrations of these contaminants prior to CO₂ capture.

Some amine scrubbing technology developers have focused on MEA. Commercial providers of MEA technology include ABB Lummus Global and Fluor Daniel Econamine FGSM. ABB Lummus uses a 15%–20% MEA in water solution for its commercial facilities (Imai, 2003). Fluor Daniel uses a 30% MEA solution and incorporates an inhibitor to protect against corrosion (Imai, 2003; Reddy et al., 2003). Together, there are more than 20 commercial MEA scrubbing plants in operation that range in size up to 385 tons CO₂/day (International Energy Agency [IEA] Greenhouse Gas R&D Programme, 2008; Reddy, S., 2008). For comparison, a 500-MW coal-fired power plant typically produces up to 8200 tons CO₂/day (New York Academy of Sciences, 2008).

Mitsubishi Heavy Industries' hindered amines (designated KS-1 and KS-2) are said to reduce steam consumption for regeneration by about 20% when compared with MEA requirements (Iijima, 2002). A commercial CO₂ separation process using KS-1 has been operating at a fertilizer plant in Malaysia since October 1999.

Other developers are featuring specially tailored "designer" amines or combinations of amines. Cansolv specially tailors its amine-based absorbents for fast kinetics (similar to primary amines), very low degradation (similar to tertiary amines), high resistance to oxidation and free radical attack, and the lowest possible regeneration energy (Cansolv, 2008). The Cansolv carbon capture system can be used in concert with the Cansolv SO₂ scrubbing system or the Cansolv multipollutant control system, which are used to control SO_x levels prior to CO₂ capture. A commercial test of this carbon capture technology is being conducted at NSC in Japan.

In addition to the alkanolamines, liquid scrubbing processes are now being developed using ammonia as the absorbent. Powerspan's ECO₂TM technology, which began as a research effort with the U.S. Department of Energy National Energy Technology Laboratory (NETL), is one such process (Powerspan, 2008). Ammonia permits a higher CO₂ loading than does MEA, requires less energy for regeneration and release of CO2, and exhibits minimal sorbent degradation by other flue gas constituents. The heat-stable salts that are formed by the reaction of ammonia with SO_x and NO_x can be used as a fertilizer, providing possible value-added benefit for the first 1000- to 1500-MW facilities on which it is installed. Estimates indicate that between 25% and 30% of the U.S. fertilizer market could be met by the quantity that would be produced by the process if it were installed on a 500-MW plant. The ECO₂ process is integrated after the Powerspan ECO® process, which provides NO_x, SO_x, and particulate control. Bench-scale testing has shown a 90% CO₂ removal rate with ammonium carbonate solutions. Parametric testing will define absorption rates, ammonia vapor management, and absorptive capacity. Pilot-scale testing of the ECO₂ process began in December 2008 at FirstEnergy's R.E. Burger Plant in Shadyside, Ohio, on a 1-MW slipstream (20 tons/day). The testing was scheduled to continue through 2009. Within the PCOR Partnership region, the ECO₂TM technology was selected in March 2008 by Basin Electric Power Cooperative for a 125-MW technology demonstration at the Antelope Valley Power Station.

Another ammonia-based technology, ALSTOM's chilled ammonia process, is designed to operate with slurry (Power, 2008). Cooled flue gas flows upward countercurrent to the slurry, which contains a mix of dissolved and suspended ammonium carbonate and ammonium bicarbonate and captures more than 90% of the CO₂. The process has the potential to be applied to capture CO₂ from flue gases exhausted from coal-fired boilers and natural gas combined-cycle (NGCC) system as well as a wide variety of industrial applications. ALSTOM is installing the technology in the Pleasant Prairie Power Plant in Wisconsin, which is owned and operated by We Energies. ALSTOM has also signed a joint development contract with Statoil for the design and construction of a 40-MW test and product validation facility at Statoil's Mongstad refinery in Norway. This facility will be designed to capture at least 80,000 tons of CO₂/year from flue gases from either the refinery's cracker unit or a new combined heat and power plant being built by Statoil and scheduled to be in operation by 2010. ALSTOM plans to offer a commercial product for selected market segments before the end of 2011.

Processes using hot potassium carbonate have been commercialized as the Catacarb[®] and Benfield processes (Catacarb, 2008; UOP LLC, 2008). Typically, the Catacarb[®] and Benfield processes are used for either bulk or trace acid gas removal when removing CO₂ from synthesis gas in ammonia plants or direct iron ore reduction plants, treating natural gas to achieve either liquefied natural gas or pipeline specifications, or to purify recycle gas in an ethylene oxide facility. They can be corrosive and require larger-scale equipment, an issue when retrofitting space-constrained sites for carbon capture.

Other chemical absorption methods are at bench and laboratory scales of development. A process that uses a potassium carbonate/piperazine complex is being researched by the University of Texas at Austin (Cullinane and Rochelle, 2004). Researchers at the University of Regina, Saskatchewan, are studying PSR solvents, which are proprietary designer solvents formulated for optimized separation of CO₂ from any gas stream (Veawab et al., 2001). NETL scientists are focusing efforts on amine-enriched sorbents (Gray et al., 2003), and amino acid salt solutions are also being developed (van Holst et al., 2006). It is unlikely that any of these technologies would be ready for deployment during the first CCS activities in the PCOR Partnership region.

Application of Chemical Absorption Technology to PCOR Partnership Point Sources

It is most likely that the PCOR Partnership region's earliest application of carbon capture would be at the ethanol, gas-processing and electricity-generating facilities. The CO₂ produced at gas-processing plants and during the fermentation step at ethanol plants would require minimal processing to prepare it for pipeline transportation, making these attractive first targets for CO₂ capture. Because the region's coal-fired power plants emit roughly two-thirds of the CO₂ produced by industrial stationary sources, capture of their CO₂ could significantly reduce the overall regional point-source emission of CO₂, making them likely targets for capture.

Chemical and physical absorption systems are the only commercial capture technologies that apply to high-volume, mixed-gas streams. Although they have not been demonstrated on each of the source types, amine systems are theoretically applicable to the CO₂ emission from virtually all of the PCOR Partnership sources that produce CO₂ during combustion of coal or

natural gas. The primary exception would be the fermentation step of ethanol processing because it requires only dehydration. Cement/clinker production might also be excluded since a changing variety of fuels is often employed at those facilities, making application of absorption difficult.

During ethanol manufacture, the CO_2 vented from the fermenters and beerwell is scrubbed with freshwater and sodium sulfite, which removes alcohol, acetaldehydes, and other volatile organic compounds (VOCs). The water used in the CO_2 -scrubbing process is reclaimed into the process via the cook water tank and is considered to be a step within the ethanol production process rather than a separate CO_2 capture process (Hawkeye Energy, 2008). Typically, the CO_2 is marketed to the food-processing industry for use in carbonated beverages and flash-freezing applications.

The cement/clinker industry does not typically capture CO₂, although considerable efforts are being made to implement oxycombustion (Worrell et al., 2001). In this scenario, oxygen would be fed to the burner in the kiln instead of air, producing a highly concentrated CO₂ stream. This technology is currently not cost-effective, and further research is needed to assess its technical and commercial applicability.

Amine scrubbing is commonly used throughout the petroleum- and natural gas-processing industry for CO₂ capture because of the technology's high capture efficiencies and ability to provide the purity needed for EOR efforts. Therefore, amines are recommended for carbon capture in other industries where a majority of emissions are from gas combustion, including agricultural processing, paper and wood products, and petroleum refining. Amine scrubbing can also be used for other fossil fuel combustion, suggesting that this approach may be utilized for coal combustion in the electricity-generating industry.

Table 2 summarizes the match of carbon capture technologies to the largest source of CO₂ emissions for each industry.

Table 2. Various PCOR Partnership Industries and Their Capture Technology Matches

		5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Industry	Largest CO ₂ Emitter	Capture Technology
Agricultural Processing	Gas combustion	Amine scrubbing
Cement/Clinker ¹	Clinker production	Oxycombustion
Electric Generation	Coal combustion	Amine scrubbing
Ethanol Manufacture ²	Fermentation step	Water scrubbing
Paper and Wood Products	Gas combustion	Amine scrubbing
Petroleum and Natural Gas Processing	Gas combustion	Amine scrubbing
Petroleum Refining	Gas combustion	Amine scrubbing

¹ Hawkeye Energy, 2008.

THE COST OF CO₂ CAPTURE

Employing CO₂ capture on a regionwide scale will require considerable energy and financial resources. The cost of capture required for the wide-scale deployment of carbon

² Worrell et al., 2001.

sequestration in the PCOR Partnership region was estimated. It is assumed that initial CO₂ capture will occur at ethanol plants and gas-processing facilities. This is because a stream of almost pure CO₂ is created during the fermentation step at ethanol plants and from the gas-sweetening activities at natural gas-processing plants and would, therefore, be the easiest to purify. Electricity-generating stations would likely be the next capture target industry simply because so much of the region's CO₂ is produced when coal is combusted to produce electricity. A cost assessment was performed by determining the cost and power requirements of various levels of capture at ethanol plants, gas-processing plants, and electricity-generating facilities. For the power plants, replacement power requirements were also calculated. The results of these calculations are summarized in the following sections. The reader should note that any values given for British Columbia, Montana, and Wyoming do not reflect the entire state/province. Details of the capture from power plants on a state-by-state or province-by-province basis are provided in Appendix A.

Capture and compression costs and power requirements for ethanol plants, gas-processing plants, and electricity-generating facilities were estimated using the Integrated Environmental Control Model (IECM), Version 5.22 (released January 28, 2008) (IECM, 2008). The IECM is a desktop computer model that was developed at Carnegie Mellon University with funding from NETL. The IECM is available as freeware at www.iecm-online.com. The IECM allows different technology options to be evaluated systematically at the level of an individual plant or facility and takes into account not only avoided carbon emissions, but the impacts on multipollutant emissions as well; plant-level resource requirements; capital, operating, and maintenance costs; and net plant efficiency. Uncertainties and technological risks also can be defined. The modeling framework is designed to support a variety of technology assessment and strategic planning activities. Four types of fossil fuel power plants are currently included in the model: a pulverized coal plant, a natural gas combined-cycle (NGCC) plant, a coal-based integrated gasification combined-cycle (IGCC) plant, and an oxyfuel combustion plant. Each plant can be modeled with or without CO₂ capture and storage. While the IECM does not contain ethanol or gas-processing plant modules, Energy & Environmental Research Center (EERC) researchers found it possible to configure the model in a manner permitting prediction of these costs, thereby putting both the ethanol and power plant cost and power requirement estimations on the same basis and enabling valid comparisons to be made.

Ethanol Plants

For this study, the IECM was run multiple times to determine the costs and power requirements for various levels of CO₂ capture at the PCOR Partnership region's ethanol plants. To model the fermentation step, the IECM was configured as a natural gas-fired combustion turbine with amine scrubbing. Changing various turbine operating characteristics and the flue gas bypass option allowed the model-produced virtual plant to produce the same quantity and quality of CO₂ as the particular ethanol plant being modeled. The model outputs for the virtual ethanol plant were manipulated to separate the costs associated with drying and compression of the appropriately sized gas stream from the rest of the capture costs. Capture of the CO₂ from the combustion portion of an ethanol plant was performed similarly, except that the costs associated with the amine scrubbing and regeneration steps were included in the results. Specific procedures used to apply the IECM to ethanol plant calculations are presented in detail in Appendix B.

CO₂ Emission Reduction Potential

The PCOR Partnership region contains 92 ethanol plants, 90 of which use natural gas as fuel. The remaining two plants are fueled by coal. Collectively, these ethanol plants emit roughly 26.5 million short tons of CO₂ each year. Almost 59% of the CO₂ is emitted during the fermentation (noncombustion) process, while slightly more than 41% is emitted during combustion. Ethanol plants emit 4.7% of the CO₂ produced by the PCOR Partnership region's large point sources. Capture of all of the noncombustion CO₂ would reduce the region's CO₂ output by nearly 3%. An additional 2% of the region's point-source emissions could be avoided if 90% of the CO₂ produced during fuel combustion at ethanol plants was captured. It is generally assumed the practical maximum capture of CO₂ produced during combustion is 90%.

Processing the CO₂ emitted from the noncombustion ethanol production activities requires only drying and compression. However, ethanol plants also produce CO₂ during combustion of fuel, and this CO₂ would require capture, assumed in this case to be accomplished by an amine system. Following capture, the CO₂ stream would then be dried and compressed. It is assumed that virtually all of the noncombustion CO₂ would be captured. Amine scrubbing can reliably remove 90% to 95% of the CO₂ from a flue gas, although cost constraints may not permit removal of even 90% of the combustion CO₂. Therefore, cost and power requirements were calculated for capture of various levels of CO₂, including 10%, 25%, 50%, 75%, and 90%.

Energy Consumption During Capture of CO₂ from the PCOR Partnership Region's Ethanol Plants

Table 3 shows the results of energy consumption calculations performed using the IECM. These calculations indicate that drying and compression to 2500 psig of noncombustion CO₂ produced during the fermentation step requires an average of 0.112 MWh of electricity for each ton of fermentation CO₂ produced at ethanol plants. A compression target of 2500 psig was chosen because the Great Plains Synfuels Plant CO₂ stream arrives at its target geologic formation at 2500 psig. Although some targets may require less pressure, 2500 psig was deemed a prudent value as it would not be likely to underestimate compression costs. For the entire PCOR Partnership region, this power requirement totals 300 MW each year. Because ethanol plants do not produce their own electricity, this additional energy would need to be obtained from the region's power grid. If it could not be provided by the existing power plants, additional capacity would have to be added, either by expanding some of the existing facilities or in the form of an additional plant producing 300 MW after capturing its own CO₂.

Capture, drying, and compression of the CO₂ produced during combustion of fuel at an ethanol plant increases the average electricity requirement to 0.498 MWh on average for each ton of CO₂ captured each year. Depending upon the level of CO₂ capture, the regional power requirements could be as much as an additional 855 MW, for a total of 1155 MW.

Table 3. Energy Required to Capture CO₂ from Ethanol Plants

				Percentage of	Percentage of
	Amount of			CO_2	PCOR
	CO_2			Emissions	Partnership
Capture	Captured,	Regional Power	Energy	from PCOR	Regional
Efficiency,	millions of	Requirement,	Consumption, ¹	Partnership	Point-Source
%	short tons/yr	MW	MWh/ton CO ₂	Ethanol Plants	Emissions
Noncombust	tion Emissions				
100	15.6	284	0.115	58.9	2.7
Combustion	Emissions				
10	1.1	83	0.711	4.1	0.2
25	2.7	209	0.711	10.3	0.5
50	5.4	417	0.711	20.7	1.0
75	8.2	626	0.711	31.0	1.5
90	9.8	751	0.711	37.2	1.8

Assuming 6575 hr/yr of plant operation.

Extent and Cost of CO₂ Capture at Ethanol Plants in the PCOR Partnership Region

The IECM-estimated cost to process a ton of CO₂ ranges from about \$6.80 to \$22.00 for noncombustion CO₂ (which only requires drying and compression) to as much as \$103 to \$852 for capture, drying, and compression of 10% of the CO₂ produced during fuel combustion. Typical estimates for drying and compression range from \$5.40 to \$10.90/ton CO₂ (\$6 to \$12/tonne) (Dooley et al., 2006). Table 4 shows the range of costs required to capture, dry, and compress CO₂ at the PCOR Partnership region's ethanol plants. The higher costs per ton are usually found at the smaller facilities that cannot spread the capital and operating and maintenance (O&M) costs over a large CO₂ product stream, thereby missing out on the economic benefit typically afforded large-scale operations. Capture from the combustion stream of facilities producing less than 15,000 tons/yr was deemed to be so uneconomical that they were not considered in the calculations. Similarly, the per-ton cost of capture, drying, and compression decreases as the capture percentage increases because the capital and O&M costs are spread over a larger quantity of CO₂.

Even at higher capture rates at the largest of the ethanol plants, the high costs associated with capture of CO₂ from the combustion activities may deter plant ownership from pursuing this option, concentrating instead on the noncombustion CO₂. If only the noncombustion CO₂ were dried and compressed, the total regional cost would equal \$165 million/year. This does not include costs that would be associated with any required expansion of the region's electrical output. Sequestration of this quantity of CO₂ would reduce the regional emissions by 3.1%. The levelized annual cost required for capture of various percentages of the CO₂ produced during combustion activities is shown in Table 5. As shown in Table 5, these levelized annual costs range from \$281 million/year to \$1.09 billion/year for CO₂ capture percentages of 10% and 90%, respectively.

Table 4. Range of Costs to Capture, Dry, and Compress CO₂ Produced at the PCOR

Partnership Region's Ethanol Plants

Amount of CO ₂ Captured, %	Lowest Cost, \$/ton CO ₂	Highest Cost, \$/ton CO ₂
Noncombustion Emissions		
100	6.77	21.69
Combustion Emissions		
10	102.70	852.04
25	75.90	483.83
50	63.14	331.56
75	57.71	271.08
90	55.65	248.72

Table 5. Total Annual Cost to Capture CO₂ at the PCOR Partnership's Ethanol Plants

	Levelized Annual	Reduction in PCOR
Amount of CO ₂ Captured, %	Cost, \$millions/yr	Partnership CO ₂ Emission, %
Noncombustion Emissions		
100	148	2.7
Combustion Emissions		
10	281	0.2
25	466	0.5
50	728	1.0
75	960	1.5
90	1093	1.8

¹ Includes capital and O&M costs.

Figure 6 shows the percentage of CO_2 emissions produced from ethanol plants in the states/provinces with plants that emit at least 15,000 tons of CO_2 annually. Charts comparing the energy consumption and cost of capture from ethanol plants among the states and provinces are included in Appendix C.

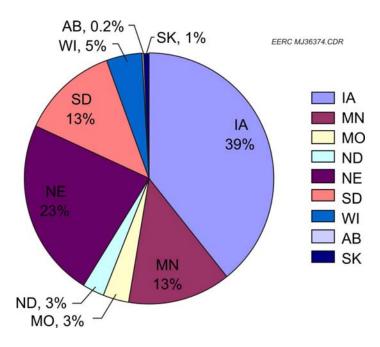


Figure 6. Percentage of CO₂ emissions from ethanol plants contributed by each state/province with at least one ethanol plant that produces >15,000 tons/yr.

Gas-Processing Facilities

CO₂ Emission Reduction Potential

Gas processing represents one of the easier sources from which to capture CO_2 in a fairly concentrated form because CO_2 is separated from the raw natural gas stream during acid gas removal activities. Usually, this stream is vented.

The *Oil and Gas Journal* Worldwide Gas Processing 2008 data set was purchased to ensure that the larger gas-processing facilities, especially those in Canada, were included in the PCOR Partnership CO₂ sources database. The data set included data for 982 gas-processing and gas transmission sites that are located within the PCOR Partnership region boundaries. The purchased data set did not specifically include CO₂ emissions. Actual CO₂ emissions values were found for many of the facilities by searching the Environment Canada Facility Greenhouse Gas Reporting Search Data Web site (Environment Canada, 2009). For the facilities for which CO₂ emissions could not be determined, the quantity of captured CO₂ was estimated using the following approach. Metz and others (2005) note that about half of raw natural gas production contains CO₂ at concentrations that average at least 4% by volume, so CO₂ content of the raw natural gas throughput at the various facilities was estimated to make up 4 vol% of this stream. To be on par with the data generated by the other U.S. Department of Energy Regional Carbon Sequestration Partnerships, an average 75% CO₂ removal rate was assumed (DOE Regional Carbon Sequestration Partnerships Capture and Transportation Working Group, 2008). Equation 1 shows the calculation used to estimate the amount of CO₂ captured in short tons/yr:

$$CO_{2} Out = g \times 0.04 \times \frac{10^{6} \frac{\text{ft}^{3}}{\text{d}}}{\frac{\text{MMft}^{3}}{\text{d}}} \times \frac{365 \, \text{d}}{\text{yr}} \times \frac{\text{lbmol}}{379 \, \text{ft}^{3}} \times \frac{44 \, \text{lb}}{\text{lbmol}} \times \frac{1 \, \text{ton}}{2000 \, \text{lb}} \times 0.75$$
 [Eq. 1]

In this equation, g is the natural gas throughput in MMft³/d, and the gas stream is assumed to be at oil and gas industry standard conditions of 60°F and 1 atm. It should be noted that this methodology does not imply a quality of processed natural gas. It is merely a tool used to estimate CO₂ capture and subsequent emission for an "average" gas-processing facility when actual emission data are not available.

Each of the natural gas-processing facility locations was verified by visual confirmation using the Google Earth satellite imagery. If the emission from a site was small and the facility did not appear on the satellite photographs to be a processing facility, the site was considered to be a natural gas transmission site rather than a gas-processing site. In keeping with the rest of the PCOR Partnership CO₂ point sources, gas-processing plants emitting less than 15,000 short tons/yr were eliminated prior to their incorporation into the existing CO₂ emissions data set.

The PCOR Partnership CO₂ emissions data set also includes data for petroleum- and natural gas-processing plants. Some of the CO₂ emissions in the database are related to combustion of fuels, but some information is available regarding the CO₂ produced during the noncombustion activities, i.e., gas sweetening. Where available data permitted, the CO₂ that was captured at these facilities during gas sweetening was catalogued and added to the CO₂ produced at the gas-processing plants. The resulting 99 plants producing a fairly pure, 21.1-million tons/yr CO₂ stream during natural gas or petroleum processing are summarized in Table 6. The energy requirement and cost associated with drying and compressing the CO₂ from these plants are summarized by state/province in Table 7 (not all states/provinces contain gas-processing plants).

Table 6. CO₂ Produced During Gas-Processing Activities in the PCOR Partnership Region

State/Province	Number of Facilities	Short tons CO ₂ /yr ¹
Alberta	82	16,460,000
British Columbia ²	12	4,470,000
North Dakota	3	120,000
Saskatchewan	1	30,000
Wyoming ²	1	30,000
Total	99	21,110,000

¹ Rounded to the nearest 10,000 short tons/yr.

² Only includes the portion of the state/province contained in the PCOR Partnership region.

Table 7. Energy Required and Cost Associated with Drying and Compression of the CO₂

Produced During Natural Gas-Processing Activities

110aacea Daring Maarar Gas 110cessing 11cm Mics			
State/Province	Energy Required, MW	Annual Cost ¹ , \$ million	
Alberta	289.7	200.9	
British Columbia ²	81.3	46.2	
North Dakota	3.8	5.6	
Saskatchewan	0.6	0.9	
Wyoming ²	0.6	0.9	
Total	376.0	254.5	

¹ Levelized annual cost including both capital and O&M costs.

Electric Utilities

CO₂ Emission Reduction Potential

An estimated 372,720,000 tons of CO₂ a year is emitted by all of the region's electric generating stations, which equates to 66% of all PCOR Partnership CO₂ emissions from stationary sources. Several options for capture of CO₂ from coal-fired power plants are being developed and were discussed earlier in this document. Of these options, the most commercially viable for power plants is absorption using an amine scrubber with MEA. MEA scrubbing is considered to be the baseline capture technology against which others are measured in terms of cost, efficiency, and parasitic load. To determine the cost of retrofitting the region's electric generating stations with CO₂ capture capability, the IECM was used to estimate the costs and power requirements associated with adding an MEA scrubber system to the postcombustion side of all electric generating stations larger than 100 MW. A 100-MW cutoff limit was chosen for two reasons:

- The economics and power requirements of capturing CO₂ at units smaller than 100 MW would make electric generation at these units no longer feasible.
- The IECM has a lower estimation boundary level of 100 MW, meaning that values calculated using the IECM for units smaller than 100 MW may not depict the true costs and power requirements. Appendix B outlines the procedures followed when using the IECM to estimate the cost and power requirements for capturing, drying, and compressing CO₂ produced from electricity-generating stations.

The results of capturing, drying, and compressing CO₂ produced from 100-MW and larger electric generating stations in the PCOR Partnership region are discussed on a state and province level in Appendix A and on an overall regional basis in the remainder of this section.

Regional Summary of CO₂ Emission Reduction Potential

The 100-MW cutoff limit excluded several electricity-generating stations from the study. A total of 74 generating stations were determined to have units larger than 100 MW. Out of these 74 generating stations, a total of 132 individual generating units were larger than 100 MW. Each

² Only includes the portion of the state/province contained in the PCOR Partnership region.

of these units was characterized by coal type, boiler type, unit size, and existing pollution control equipment. This specific information is summarized in Appendix A. The 132 units have an overall generating capacity of 45,096 MW. Figure 7 breaks down the power production considered for CO_2 capture implementation in each of the states or provinces. As seen in Figure 7, Missouri generates the most power in these units. Figure 8 shows the amount of CO_2 produced from the 132 electricity generating units considered eligible for CO_2 capture on a state/province basis. They produce approximately 350 million tons/year, which is 95% of all the CO_2 produced from electric generating stations in the PCOR Partnership region. A map showing the location of all the stations considered to be eligible for CO_2 capture implementation under this study is shown in Figure 9.

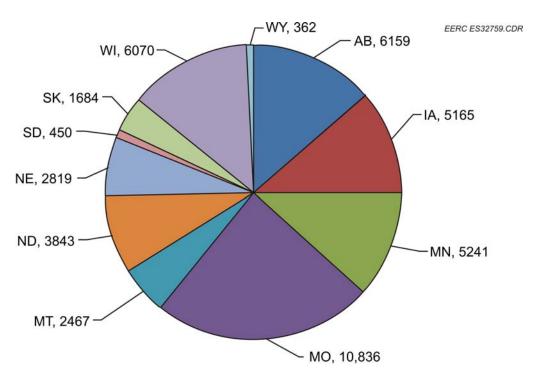


Figure 7. Summary of the total amount of MW considered for CO₂ capture in each state or province. Only the portions of each state/province that lie within the PCOR Partnership region were included.

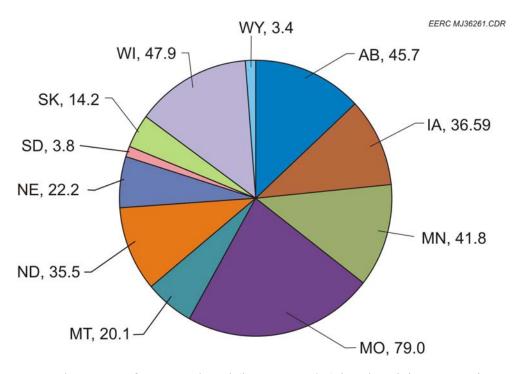


Figure 8. Total amount of CO₂ produced (in MMtons/yr) by electricity-generating stations considered for CO₂ capture on a state/province basis. Only the portions of each state/province that lie within the PCOR Partnership region were included.

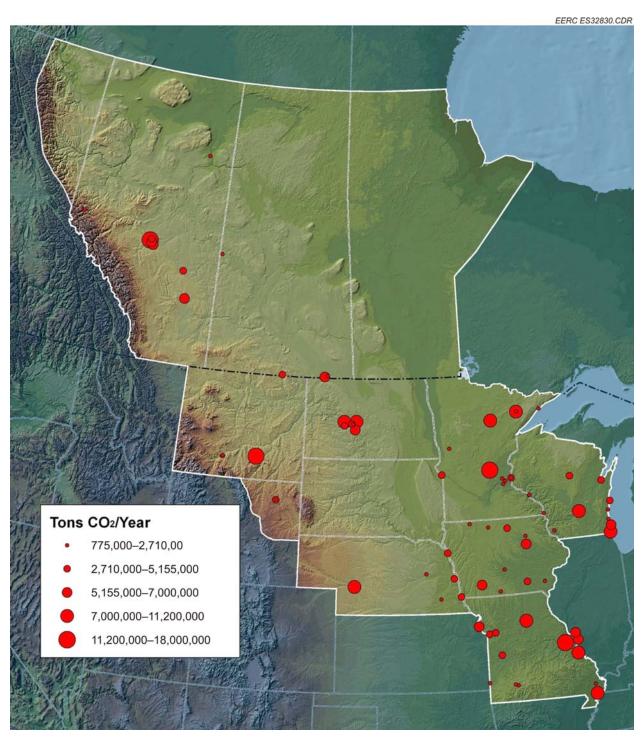


Figure 9. Map showing the location and range of CO₂ emissions of the electricity-generating stations larger than 100 MW in the PCOR Partnership region.

Energy Consumption During CO₂ Capture

The IECM was used to determine the cost and energy penalty (i.e., the amount of electricity generated by the plant that cannot be put on the grid because it is used for the capture process) associated with implementing CO₂ capture on the existing electricity-generating units in the PCOR Partnership region. The results are detailed in Appendix A. The primary parameters of concern were parasitic load of the amine scrubber; additional parasitic load from adding a wet flue gas desulfurization (WFGD) unit, if needed; total CO₂ produced; total CO₂ captured; cost of adding a WFGD, if needed; and total levelized cost of retrofitting the amine scrubbing system, including drying and compression. The total cost of capturing CO₂ is displayed in \$/ton of CO₂ captured and includes both the levelized annual cost of the amine scrubbing system and the additional cost accrued from retrofitting WFGD in the cases where it was needed. A WFGD was added to the cost of CO₂ capture in instances where SO_x control was not previously installed at the plant. This was done because the cost penalty for not removing the SO_x upstream of the amine scrubbing system is greater than if a WFGD system were added. The SO_x concentration entering the amine scrubber system is an important parameter when determining the O&M cost because of the solvent degradation that occurs in the presence of SO₂ and SO₃. If the SO_x concentration is greater than about 10 ppm, the solvent degradation can become a significant cost component when CO₂ is captured in an amine system. While amine can be reclaimed from the heat-stable salts formed when amines react with SO_x and NO_x, the process often produces a hazardous waste with associated expensive disposal costs. Therefore, the preferred choice is to avoid the formation of heat-stable salts.

The IECM was run for every unit in each of the portions of the states or provinces in the PCOR Partnership region at five different CO₂ capture rates (10%, 25%, 50%, 75%, and 90%). The results are summarized in Table 8. The cost to capture a ton of CO₂ is essentially unchanged for CO₂ capture rates of 50% to 90% because of the statistical accuracy of the economic evaluation. The cost for this range of capture was \$46 to \$49/ton of CO₂ captured for the capture rates of 90% to 50%, respectively. Although the cost per ton was relatively stable, the total cost and power requirement increased linearly as the capture percentage increased. The lowest total cost of \$2.9 billion annually would be required to capture 10% of the CO₂. As much as \$14.4 billion annually would be needed to capture 90% of the CO₂. The power requirement ranged from 1797 to 16,036 MW for 10% to 90% CO₂ capture, respectively. These results are shown graphically in Figure 10.

The results from the model simulations show a significant cost and energy penalty for capturing 90% of the CO₂ emitted from these units. The energy that would be consumed by capturing CO₂ at this high rate is 16,036 MW or 35.6% of the current gross output of all of the electricity-generating stations that were considered in this study. At the highest rate of capture (i.e., 90%), an estimated 315,000,000 tons of CO₂ would be captured, or roughly 85% of all the CO₂ produced by all of the electricity-generating stations in the PCOR Partnership region. The total CO₂ produced by point sources in the PCOR Partnership region is about 562 million tons a year. If 90% CO₂ capture could be achieved from the electricity-generating stations considered for capture in the PCOR Partnership region, an overall reduction of 56% would be realized from all CO₂ emitted by point sources in the region. Figure 11 shows the amount of CO₂ captured a year for different CO₂ capture rates. Also shown in Figure 11 is the percentage of

Table 8. Summary of Results for Implementing CO₂ Capture on Electricity-Generating Stations Larger than 100 MW

Capture %	10		25		50		75		90	
Gross Electrical Output,										
MW(g)	45,096		45,096		45,069		45,096		45,096	
Amine Scrubber Use, MW	1686		4181		8363		12,545		15,054	
Wet FGD Use, MW	111		273		545		818		981	
Total Aux. Load, MW	1797		4454		8908		13,363		16,036	
Total CO ₂ Produced, tons/yr	349,914,627		349,914,627		349,914,627		349,914,627		349,914,627	
CO ₂ Captured, tons/yr	34,991,463		87,478,656		174,957,314		262,435,970		314,923,164	
		\$/ton								
Cost Component	M\$/yr	CO_2^2								
Annual Cost of SO ₂										
Removal ³	1057	30	1227	14	1511	9	1794	7	1964	6
Total Levelized Annual Cost										
(includes both SO ₂ removal										
and CO ₂ capture)	1838	83	3847	58	7079	49	10,483	47	12,468	46

Total auxiliary load from additional components for CO₂ capture equipment.

US\$/ton CO₂ captured + cost of SO₂ removal in US\$/ton.

In terms of additional SO₂ removal for CO₂ capture benefit.

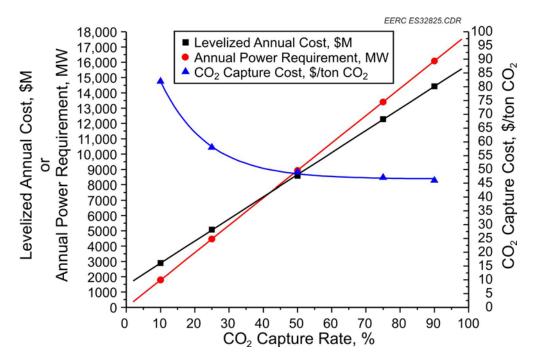


Figure 10. Graphical summary of the costs and energy penalty associated with implementation of CO₂ capture at electricity-generating stations larger than 100 MW in the PCOR Partnership region.

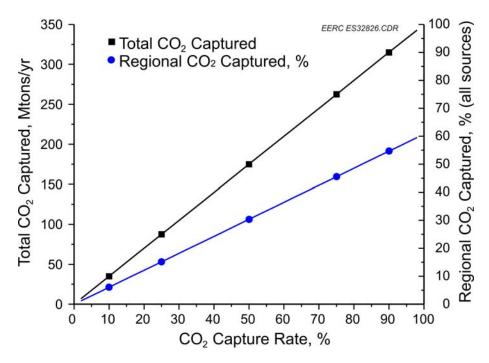


Figure 11. Total CO₂ captured from all electric generation stations larger than 100 MW in the PCOR Partnership region.

regional CO₂ emissions that would be captured at the various CO₂ capture rates if applied to the electricity-generating stations considered in this study.

Considerable energy would be required to capture the CO₂ from the electricity-generating stations in the PCOR Partnership region, resulting in power lost to the grid that would need to be replaced. Several options exist for replacement generating stations, but the most likely technology candidates are scrubbed coal and IGCC. Both of these options would have to include CCS. The cost to replace the power consumed by retrofitting CO₂ capture ranges from \$2431 to \$3593 per kW for IGCC or \$2279 to \$2726 per kW for scrubbed coal, both with the cost of CO₂ capture added. For IGCC, the lower value is what is estimated by the IECM, and the higher value is the worst-case estimate found during an Internet search (Energy Justice Network, 2007). For the scrubbed coal facilities, the lower value is the estimate from the Energy Information Administration (EIA) assumptions to the Annual Energy Outlook 2008 (Energy Information Administration, 2008). It should be noted that it is not known if these estimates were all made on the same basis; they are given here to provide a context within which to compare relative costs. A sensitivity analysis was performed on the cost to replace the power consumed by implementing CO₂ capture (replacement power calculations take into account the fact that those facilities that would capture CO₂ incur additional power needs). This analysis produced a range of the most likely total capital costs needed to replace the power for different CO₂ capture rates. Figure 12 shows the results of the sensitivity analysis of the replacement power capital cost. Table 9 provides EIA assumptions regarding the capital cost of new electricity-generating stations for several other technology options.

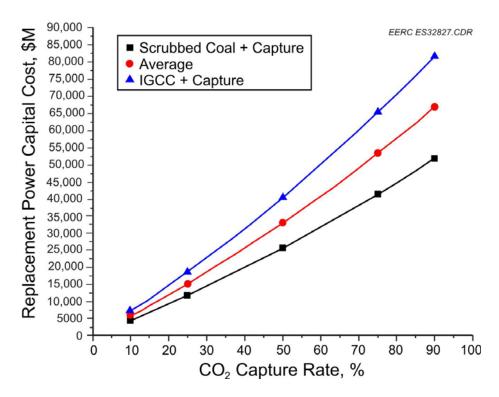


Figure 12. Replacement power capital cost as a function of CO₂ capture rate for two power generation methods and their average.

Table 9. EIA Assumed Capital Costs of New Electricity-Generating Stations

•		Lead Time,	Total Overnight Cost
Technology	Size, MW	years	in 2007, 2006 \$/kW
Scrubbed Coal New	600	4	1534
IGCC	550	4	1773
IGCC with Carbon Sequestration	380	4	2537
Conv. Gas/Oil Comb. Cycle (CC)	250	3	717
Adv. Gas/Oil CC	400	3	706
Adv. CC with Carbon Sequestration	400	3	1409
Conv. Combustion Turbine	160	2	500
Adv. Combustion Turbine	230	2	473
Fuel Cells	10	3	5374
Advanced Nuclear	1350	6	2475
Distributed Generation – Base	5	2	1021
Distributed Generation – Peak	2	3	1227
Biomass	80	4	2809
Municipal Solid Waste – Landfill Gas	30	3	1897
Geothermal	50	4	1110
Conventional Hydropower	500	4	1551
Wind	50	3	1434
Wind Offshore	100	4	2872
Solar Thermal	100	3	3744
Photovoltaic	5	2	5649

Extent and Cost of CO₂ Capture at Electric Utilities Within the PCOR Partnership Region

To better understand how the costs are distributed throughout the region, the results were examined on a state and province level. When these costs are examined on a dollar-per-ton-CO₂-captured basis, it is evident that the highest costs would occur in Saskatchewan. This is principally because the power plants in Saskatchewan use lignite as a fuel (it produces more CO₂ per Btu than other coals) and lack SO_x control equipment. Additional capital cost is incurred when WFGD has to be added to a power plant. The addition also increases the energy penalty. North Dakota's costs would be nearly as high, again primarily because lignite is used to fuel the electricity-generating stations. The lowest cost of capture at all capture rates was found to occur in the PCOR Partnership region portion of Montana because there are relatively few units, the units are already equipped with WFGD for SO_x reduction, and they use a subbituminous coal. Figure 13 compares the capture cost on a dollars-per-ton basis for the various capture rates for the states and provinces.

The comparison of the total annual cost to capture CO₂ shows that Missouri would incur the highest cost, followed by Wisconsin (Figure 14). The higher costs in these states are primarily the result of the large number of generating stations within these areas. As expected, the lowest total annual cost was found in South Dakota and the PCOR Partnership portion of Wyoming because they have a relatively small number of generating stations.

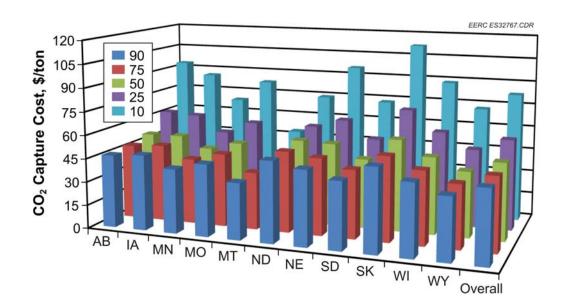


Figure 13. Comparison of CO₂ capture cost for all of the states/provinces in the PCOR Partnership region on a dollars-per-ton-CO₂-captured basis for various capture rates (it should be noted that values for Montana and Wyoming only reflect the portions of the states that lie within the PCOR Partnership rather than the entire state).

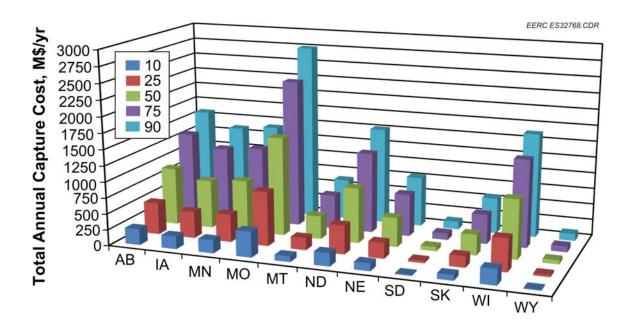


Figure 14. Comparison of total annual CO₂ capture cost for all of the states/provinces in the PCOR Partnership region for various capture rates (it should be noted that values for Montana and Wyoming only reflect the portions of the states that lie within the PCOR Partnership rather than the entire state).

The comparison of the total energy required for CO₂ capture at the facilities that are larger than 100 MW in each state revealed similar results, with Missouri requiring the most energy because the existing power output is high relative to the rest of the region. This comparison is shown in Figure 15. Alberta and Wisconsin are the next highest, also because the power output of the electricity-generating stations there is high. Because of the relatively few electricity-generating stations, South Dakota and Wyoming would have the lowest power replacement requirements.

In terms of an energy penalty or the percentage of energy consumed by capture activities from the base load, North Dakota has the highest energy penalty associated with CO₂ capture. This can be seen in Figure 16. This is most likely caused by the unit types and the use of lignite fuel throughout the state. The energy penalties that would be incurred in Wyoming are similar to North Dakota's. The remaining states/provinces in the PCOR Partnership region are very similar in terms of the energy penalties associated with implementing CO₂ capture.

Reduction of CO₂ emission can be viewed in several ways. The total mass of CO₂ that could be captured in each state is compared in Figure 17. The figure shows that Missouri could capture the most CO₂, approximately 70 million tons/yr at a rate of 90% capture. Looking at the data from the perspective of reducing the CO₂ emissions from the state/province's power plants, Figure 18 shows that the largest percentage of CO₂ emission reduction from all power plants

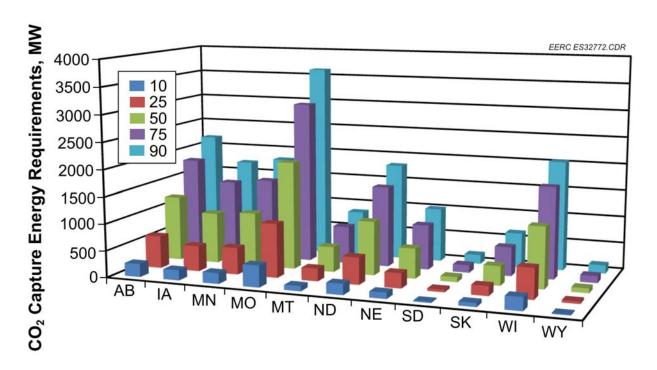


Figure 15. A comparison of the energy required for CO₂ capture in each state/province in the PCOR Partnership region for various capture rates (it should be noted that values for Montana and Wyoming only reflect the portions of the states that lie within the PCOR Partnership rather than the entire state).

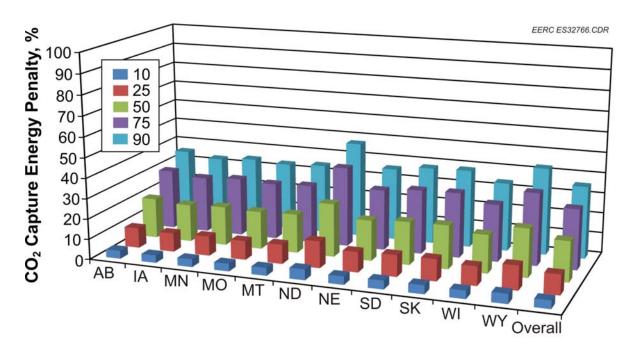


Figure 16. A comparison of the energy penalties incurred during CO₂ capture for each state/province in the PCOR Partnership region for various capture rates (it should be noted that values for Montana and Wyoming only reflect the portions of the states that lie within the PCOR Partnership rather than the entire state).

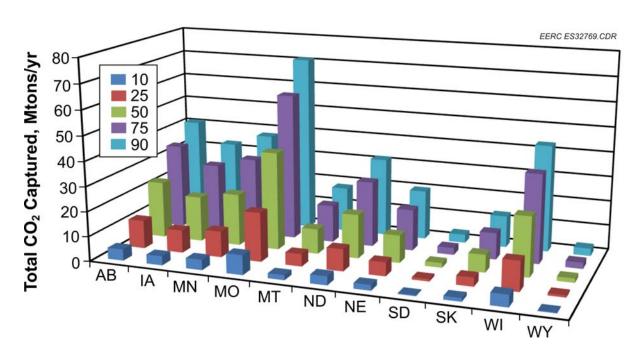


Figure 17. Comparison of the total amount of CO₂ that could be captured for each state/province in the PCOR Partnership region for various capture rates (it should be noted that values for Montana and Wyoming only reflect the portions of the states that lie within the PCOR Partnership rather than the entire state).

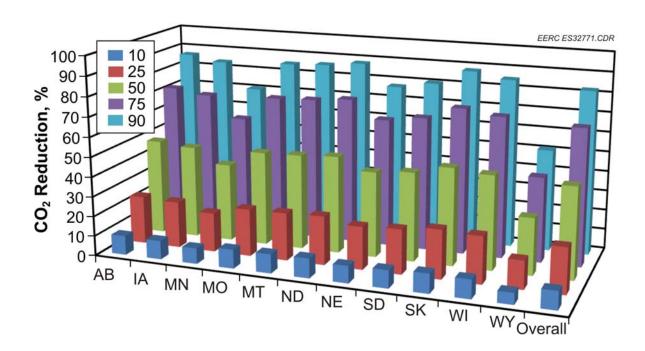


Figure 18. Comparison of the percentage of CO₂ reduced from all electricity-generating stations in each state/province in the PCOR Partnership region when CO₂ capture is implemented at the large (100 MW+) electricity-generating stations (it should be noted that values for Montana and Wyoming only reflect the portions of the states that lie within the PCOR Partnership rather than the entire state).

(including those smaller than 100 MW) could be made in North Dakota. This is because a large percentage of their electricity-generating stations are larger and capture could be implemented there. The smallest opportunity to reduce CO_2 emissions is offered by Wyoming and Minnesota. Finally, on an overall (i.e., from all stationary sources) CO_2 reduction basis (shown in Figure 19), Montana could reduce its CO_2 emission by about 75% through capture of 90% of the CO_2 from its power plants. This is possible because of the small number of point sources in the state and the fact that, while there are not many electricity-generating stations in Montana, they are large. Missouri and North Dakota could potentially capture approximately 70% to 75% of the CO_2 produced by implementing 90% CO_2 capture from their large generating stations.

The data used to develop the figures discussed in this section (i.e., Figures 13–19) are included in Appendix D.

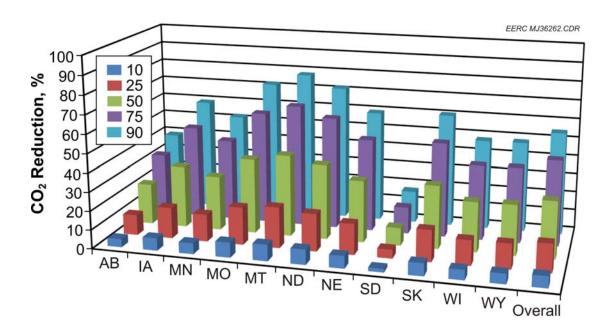


Figure 19. Comparison of the percentage of CO₂ reduced from all sources by implementing CO₂ capture at the large (100 MW+) electric generating stations for each state/province within the PCOR Partnership region (it should be noted that values for Montana and Wyoming only reflect the portions of the states that lie within the PCOR Partnership rather than the entire state).

THE COST OF TRANSPORTING CO2 TO A GEOLOGIC SEQUESTRATION SITE

Transport of large quantities of CO₂ captured at a source to a geologic sink for sequestration undoubtedly will be via pipeline. A preliminary network of CO₂ pipelines was developed during the final phase of this study for purposes of estimating regional transportation costs only. There are no plans to develop this particular CO₂ pipeline network. The original intent was to develop a three-stage pipeline network, with the first lines connecting the gasprocessing and ethanol plants to the oil fields where EOR opportunities exist, then adding the electricity-generating facilities and, finally, the spur lines to the brine formations. However, when the maps showing source and geologic sink locations were critically examined, it was apparent that the routes would overlap and that, if pipelines that would carry only CO₂ from the ethanol and gas-processing plants were laid in first, they would not be large enough to carry the additional CO₂ from the power plants when those streams were available. The prudent choice seemed to be to map out a network with sufficient capacity to carry the CO₂ at its maximum expected flow rate to both EOR opportunities and brine formations.

Development of the pipeline network was accomplished on a state-by-state basis. The PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) buffer feature was used to identify the closest geologic sinks to sources in each state. Because the PCOR Partnership region is so large, some of the sources are quite far from the geologic sinks. It was found that the CO₂ from sources in the eastern portion of the PCOR Partnership region would be more economically transported to oil fields and brine formations in the Illinois Basin rather than

Table 10. Geologic Sinks in Closest Proximity to PCOR Partnership CO₂ Point Sources

State/Province	Geologic Sink
Alberta	EOR in Alberta
British Columbia ¹	EOR in Alberta or brine formations in British Columbia
Iowa	EOR or brine formations in Illinois Basin
Manitoba	EOR in western Manitoba or southern Saskatchewan
Minnesota	EOR or brine formations in North Dakota
Missouri	EOR or brine formations in Illinois Basin
Montana ¹	EOR in Montana or North Dakota; brine formations in Montana
Nebraska	EOR or brine formations in western Nebraska
North Dakota	EOR or brine formations in North Dakota
Saskatchewan	EOR in Alberta or southern Saskatchewan
South Dakota	EOR in western North Dakota or brine formation in South Dakota
Wisconsin	EOR or brine formations in Illinois Basin
Wyoming ¹	EOR in Wyoming or brine formation in Montana

The only point sources considered in these states/provinces were those in the PCOR Partnership portion of the state or province.

to PCOR Partnership regional sinks. Table 10 summarizes the nearest sink areas for the sources in each of the states/provinces.

For each state, a map showing all of the ethanol facilities, gas-processing plants, and power plants larger than 100 MW was generated using the DSS geographic information system (GIS)-mapping capabilities. The relationships between the sources and the nearest geologic sink(s) were noted and potential routes identified. Specific main trunk pipeline routes were determined using a GIS-based model for CO_2 pipeline transport that was developed at the Massachusetts Institute of Technology (MIT) (Herzog, 2006; Massachusetts Institute of Technology, 2007). The MIT model calculates pipeline diameter and identifies the least cost path connecting a CO_2 source to a given sink. The model implements 1×1 -km obstacle grid layers in which local terrain, crossings, protected areas, and populated places are assigned relative cost factors that are used to determine the least cost route between a single CO_2 source and a geologic sink. The cost of any booster stations was not included in the pipeline cost.

To use the model, source and sink locations were selected, and both the mass flow rate of the CO₂ stream and a cost of \$70,000/in./mi were input (this cost was chosen because it was a "rule-of-thumb" pipeline cost estimate at the time this report was prepared). The mass flow rates that were used were the total CO₂ stream produced by a source or group of sources that lay on the trunk route. This was done to ensure that the resulting pipeline network would have additional room for future capture at other industrial sources as it is unlikely that an entire pipeline network would be constructed more than once. The resulting output showed the least cost route and provided metrics for the route that included distance, pipeline diameter, construction cost, and O&M cost. These outputs are summarized on a state-by-state (or province-by-province) basis in Appendix E.

While quite useful, the MIT pipeline-routing model has a few limitations. Pipeline-routing capabilities are limited to the United States; pipeline routes for the Canadian provinces had to be

estimated manually. The MIT model will not generate routes for distances less than about 25 mi. Although it takes obstacles into account when determining the least cost route, it does not include the additional costs to cross waterways or run through federal or tribal lands in its cost estimations. Rather, the model uses its default value of \$50,000/in./mi for all distances. In an effort to make up for some of the underestimated obstacle crossings and to account for the rapid increase in the costs of steel and labor that will likely continue for the foreseeable future, the pipeline calculations were performed using a cost of \$70,000 per in. diameter per mi. O&M costs were calculated to be \$5000 per mile, irrespective of pipeline diameter.

Pipelines were not considered if the only CO_2 sources feeding the line were a few small ethanol plants as it would not be cost-effective to transport that relatively small quantity of CO_2 by pipeline. This occurred in northeastern North Dakota, where two small ethanol plants are located as well as in Alberta where some sources were far from the trunk routes.

Table 11 summarizes the PCOR Partnership regional pipeline network in terms of length, construction, and O&M costs, while Figure 20 shows a map of the preliminary pipeline network. The known routes of existing and planned CO₂ pipelines (i.e., the Dakota Gasification Company's pipeline from the Great Plains Synfuels Plant to the Weyburn oil field and the Enhance Energy CO₂ pipeline planned for Alberta) were taken into account during the routing exercise. Based on proximity to the various geologic sinks, it would be less costly for the CO₂ captured in Wisconsin, Iowa, and Missouri to be transported to coal beds, oil fields, and brine formations in the Illinois Basin. CO₂ captured from plants in Nebraska likely would be sequestered in the geologic sinks located southwestern Nebraska. The CO₂ captured from plants in the PCOR Partnership portion of Montana, Minnesota, South Dakota, and North Dakota would be transported to western North Dakota for EOR or to the vast brine formations of North and South Dakota. The CO₂ captured at the Wyodak electricity-generating campus probably

Table 11. Regional Pipeline Network Summary¹

State/Province	Length, miles	Construction Cost, \$M	O&M Cost, \$M/yr
British Columbia ²	269	143.7	1.34
Alberta	1293	1383.3	6.46
Saskatchewan	110	128.8	0.55
Manitoba	_3	_	_
Montana ²	367	532.5	1.84
Wyoming ²	77	46.4	0.39
North Dakota	958	1712.0	4.79
South Dakota	915	884.0	4.58
Nebraska	1325	1639.0	6.61
Minnesota	1363	1370.5	7.02
Iowa	1312	1299.5	6.60
Missouri	986	1498.6	4.90
Wisconsin	871	1166.4	4.36
Regional Total	9846	11,547.1	49.44

¹ This summary includes all pipelines of various diameters. Appendix E shows the various pipeline diameters and lengths for each of the states/provinces.

²Only includes the pipelines in the PCOR Partnership portion of the state/province.

³ Not applicable as there are no ethanol plants or electric generating facilities larger than 100 MW.

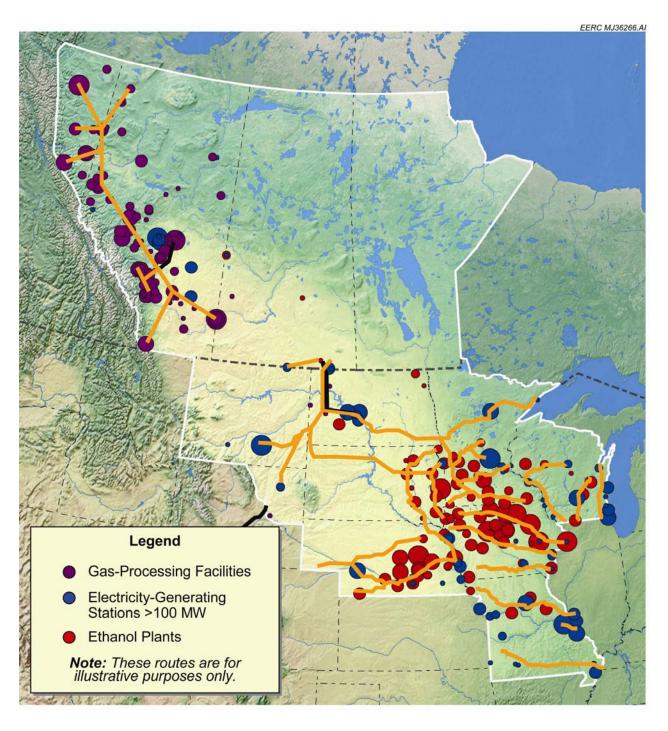


Figure 20. The illustrative PCOR Partnership pipeline network routes. Yellow gold routes show the pipeline network routes calculated during this study. Black lines are existing or planned CO₂ pipelines.

would be sequestered in oil fields nearby. CO₂ captured in Alberta and Saskatchewan would be used for EOR in those provinces, while the CO₂ captured in Manitoba likely would be transported to an oil field in western Manitoba.

The network comprises an estimated total of 9846 mi, which includes both main trunk lines and lines hooking individual sources to the main trunk. A pipeline network of this size will require about \$15.5 billion to construct and \$49.4 million/yr to operate and maintain. If this construction cost is amortized over 10 payments at 10% interest (the default for the IECM, and therefore, the value used in the levelizing calculations for all of the capture costs), an annual pipeline cost of \$2.34 billion (including both construction and O&M costs) is calculated.

Appendix E summarizes the pipelines and shows the routes for each state and province.

TOTAL COST OF WIDE-SCALE CCS DEPLOYMENT IN THE PCOR PARTNERSHIP REGION

Using the values discussed in the capture from ethanol and gas-processing plants, capture from electricity-generating stations, and pipeline routing sections, the annual cost of various regional CCS scenarios can be estimated. It is not possible to determine which sources would probably capture CO₂ and, therefore, which sections of pipeline would be required. Therefore, these estimates assume that capture will take place at all of the ethanol, gas-processing, or electricity-generating facilities and that the entire pipeline network will be needed to transport the CO₂ so as to provide the most expensive (i.e., "worst-case") scenario. Table 12 summarizes the estimates and reduction in regional emissions that would result from each of the scenarios.

To more accurately estimate the cost of capturing a ton of CO₂, the cost to replace the power lost by installing and operating the capture technology should also be taken into account. The cost of capturing, drying, and compressing the CO₂ and replacing the power needed to perform those tasks is called the avoided cost. Using the capture/drying/compression and replacement power cost estimates given in Table 12, avoided costs ranging from \$71/ton (for 90% capture from the power plants) to \$77/ton (for 10% capture) can be calculated. Total costs that include the cost of the pipeline network range from \$78/ton (at the 90% capture rate) to \$144/ton (for 10% capture). When the additional CO₂ produced by the ethanol plants and gasprocessing facilities is included with the scenario in which 90% of the CO₂ from the power plants is captured, the avoided cost drops to \$71/ton.

The increase in the generation cost of electricity (COE) caused by capture, compression, and transport of the CO₂ was estimated for the entire regional electricity-generating fleet. The estimates, which are summarized in Table 13, show that the regional COE is likely to increase by more than the DOE goal of 20%, although it may not double in cost, depending on the level of capture. The table also shows that the majority of the increase in COE at higher capture levels is caused by capture and compression and that the pipeline network does not contribute as much. Because these values were calculated using global numbers for the entire PCOR Partnership electricity-generating fleet rather than averages of COE calculations for each individual facility,

Table 12. Annualized Cost of Various CCS Scenarios in the PCOR Partnership Region

		Annualiz	zed Cost,1 \$ b		Total	% Reduction in	
	Emissions,	Capture/Drying/		Replacement	Total Annual	Cost/ton,	Regional CO ₂
Source	million tons	Compression	Pipeline	Power ²	Cost, \$ billions	\$/ton	Emissions ³
Ethanol Plants, noncombustion	15.6	0.15	2.344	NA ⁵	2.49^4	10/160 ⁶	3
Gas-Processing	21.1	0.25	2.34^{4}	NA^5	2.59^{4}	$12/123^6$	4
Plants							
Power Plants, ⁷ 10%	35.00	1.84	2.34	0.86	5.04	144	6
Power Plants, ⁷ 25%	87.48	3.85	2.34	2.24	8.43	96	15
Power Plants, ⁷ 50%	174.96	7.08	2.34	4.87	14.29	82	30
Power Plants, ⁷ 75%	262.44	10.48	2.34	7.88	20.70	79	45
Power Plants, ⁷ 90%	314.92	12.47	2.34	9.87	24.68	78	54

Calculated for pipelines and replacement power using Excel PMT function with interest = 10%, ten periods, payment at the beginning of the period. This approach produced the same annualized values as the IECM when comparison calculations were performed. The IECM was used to calculate annualized costs for capture, drying, and compression.

Cost of replacement power was the average of pc and IGCC plants; values taken from Figure 12 and amortized according to footnote "a" of this table.

³ Total regional emission from industrial point sources is roughly 561,900,000 tons/yr.

⁴ It is unlikely that the entire pipeline network would be built out for only the ethanol and gas-processing plants.

⁵ Not applicable.

⁶ First cost listed is for capture/drying/compression only; second cost includes the cost of the entire pipeline network (not likely for only the ethanol and/or gasprocessing plants).

⁷ Includes only the power plants >100 MW in size.

Table 13. Estimated Increases in COE* Due to Capture of CO₂

Percentage	Increase Caused by Capture	Increase Caused by Capture,
Capture	and Compression only, %	Compression, and Pipeline, %
10	14.9	33.9
25	33.5	53.8
50	70.1	93.3
75	120.6	147.5
90	158.7	188.5

^{*} Cost of generation of electricity rather than the retail cost of electricity.

they should be used only as relative indicators of COE trends that are possible if CCS were implemented on a wide scale within the region. It should be kept in mind that the cost to generate electricity is only a portion of the retail cost of electricity paid by consumers.

It is important to note that the DOE goal is for capture technology research and development to decrease the cost of these technologies and, therefore, the COE. Future technology improvements have the potential to decrease the capture costs and energy penalties (and associated costs) that were calculated in this report.

SUMMARY AND CONCLUSIONS

Several conclusions can be drawn regarding the early implementation of CO_2 capture and sequestration in the PCOR Partnership region. The reader should keep in mind that 1) this study estimated only the costs associated with capture, drying, compression, and transportation by pipeline to a geologic sink and that injection costs at the sink or any monetary value assigned to the CO_2 have **not** been included in the cost or energy estimates, 2) the pipeline network that was developed was only for the purpose of estimating transportation infrastructure costs and is not intended to be an implementable pipeline system, and 3) all values apply only to the portions of the states/provinces that are contained in the PCOR Partnership region.

- Early implementation of CCS in the PCOR Partnership region will probably include capture of CO₂ from ethanol facilities and gas-processing facilities as well as from at least some of the electricity-generating stations that produce more than 100 MW of power.
- While many promising capture technologies are under development, the technology that is
 most likely to be employed for capture at the power plants is chemical absorption. Amine
 scrubbing will probably be used as it is a commercial (and, therefore, better-defined)
 technology, although some facilities may choose to apply an ammonia-based scrubbing
 system to their gas streams.
- Drying and compression of the noncombustion CO₂ produced during the fermentation step at ethanol plants will cost an estimated \$150 million a year (includes levelized capital cost plus O&M costs). Capture of this CO₂ stream would reduce the PCOR Partnership region's point-source emissions by 3%. On a per-ton basis, the regional average cost of drying and compressing the noncombustion CO₂ from the ethanol plants is \$10/ton. Although on the

high end of the range, this cost is similar to compression costs found in the literature that range from \$5.44 to \$10.88/ton CO₂. The higher cost is because the streams are often relatively small and unable to take advantage of the economy of large-scale processing.

- As shown in Table 5, capture, drying, and compression of the CO₂ produced during combustion at ethanol plants could reduce the PCOR Partnership region's point-source CO₂ emissions by 0.2% to 1.8% for capture of 10% to 90%, respectively. The levelized annual cost to capture, dry, and compress this stream would range from \$281 million (for capture of 10% of the CO₂) to \$1.1 billion (for capture of 90% of the CO₂). On a per-ton basis, costs to capture this CO₂ range from \$94/ton for 90% capture at one of the larger ethanol facilities to \$1400/ton for 10% capture at one of the smaller facilities. It is unlikely that this combustion-produced CO₂ would be captured at the ethanol facilities because of the cost.
- Drying and compression of the CO₂ stream from the PCOR Partnership region's gasprocessing facilities will require an expenditure of \$255 million to capture the 21 million tons of CO₂ produced each year, or \$12/ton CO₂. This accounts for roughly 4% of the region's CO₂ emission.
- The minimum cost of using MEA to scrub CO₂ from the flue gas produced at a coal-fired power plant, dry it, and compress it is estimated to be \$46/ton to \$49/ton of CO₂ for 90% CO₂ capture and 50% capture, respectively. Roughly \$2.7 billion would be required annually to capture 10% of the CO₂ from the region's electricity-generating facilities. As much as \$22.3 billion annually would be needed to capture 90% of the CO₂.
- The replacement power requirement ranged from 1980 to 22,719 MW for 10% to 90% CO₂ capture from the power plants, respectively. The replacement power is what would be needed to operate the CO₂ capture plants at the electricity-generating stations as well as to capture the CO₂ produced by generating the replacement power. The cost of replacement power is estimated to be \$5.8 billion to \$66.7 billion for these same levels of CO₂ capture. Amortizing these values results in an annual cost of replacing the power used during capture and compression at power plants of \$860 million to \$9.87 billion.
- CO₂ captured from facilities in Wisconsin, Iowa, and Missouri will probably be sequestered in the Illinois Basin as those geologic sinks are located more proximally to the three states. CO₂ captured from plants in Nebraska likely would be sequestered in the geologic sinks located in southwestern Nebraska. The CO₂ captured from plants in the PCOR Partnership portion of Montana, Minnesota, South Dakota, and North Dakota would be transported to western North Dakota for EOR or to the vast brine formations of North and South Dakota. The CO₂ captured at the Wyodak electricity-generating campus probably would be sequestered in oil fields nearby. CO₂ captured in British Columbia and Alberta would be used for EOR in Alberta, while the CO₂ captured in Saskatchewan likely would be transported to oil fields in that province.
- Pipeline transport of CO₂ from the ethanol plants, gas-processing facilities, and electricity-generating facilities larger than 100 MW to the geologic sinks will add \$15.5 billion to the cost of CCS infrastructure in the region, or \$2.34 billion per year.

The total cost of capture, drying/compression, and pipeline transportation within the PCOR Partnership region ranges from \$5.08 billion/year for the CO₂ produced at the gas-processing plants and during fermentation at the ethanol plants (i.e., the sources most likely to be among the first to apply CCS in the PCOR Partnership region) to \$29.76 billion/yr for capture from all of the sources discussed in this report that are considered to make reasonable economic sense (the ethanol plants' fermentation CO₂, the gas-processing CO₂, and 90% of the CO₂ produced by the electricity-generating stations of the region that are larger than 100 MW). These two scenarios would reduce the region's point-source CO₂ emissions by 7% and 61%, respectively. On a perton basis, the scenario in which the ethanol plants' fermentation CO₂, the CO₂ from the gas-processing plants, and 90% of the CO₂ produced by the power plants is captured, dried and compressed, and transported by a pipeline network is \$71/ton avoided.

The increase in the cost of electricity caused by the capture, compression, and transport of the CO₂ is estimated to be 34% to 189%. Maximizing the value-added benefits associated with EOR as a means of CO₂ sequestration will help to offset these costs. Gaining experience through large-scale demonstrations and the earliest applications of CCS is likely to reduce the costs, as will improvements in existing capture technologies and development of new capture concepts.

The estimated high cost of the capture, compression, and pipeline network required for effective wide-scale implementation of CCS as a means to reduce CO₂ emission illustrates that additional research for cost-effective capture and compression technologies and judicious siting of pipeline networks are needed so that this approach can be implemented with minimal financial hardship on the region's utilities, industries, and consumers.

REFERENCES

- Cansolv, 2008, Process description: www.cansolv.com/en/co2capturedescription.ch2 (accessed July 2008).
- Catacarb, 2008, Catacarb—the catalytic process for acid gas removal: www.catacarb.com (accessed July 2008).
- Cullinane, J.T., and Rochelle, G.T., 2004, Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine: Chemical Engineering Science, v. 59, no. 17, p. 3619–3630.
- Dooley, J.J., Dahowski, R.T., Davidson, C.L., Wise, M.A., Gupta, N., Kim, S.H., and Malone, E.L., 2006, Carbon dioxide capture and storage—a core element of a global energy technology strategy to address climate change: technology report prepared by the Battelle, Joint Global Change Research Institute, College Park, Maryland.
- Energy Information Administration, 2008, Annual energy outlook 2008 with projections to 2030. EIA report number DOE/EIA-0383(2008), www.eia.doe.gov/oiaf/aeo/ (accessed July 2008).

- Energy Justice Network, 2007, Fact sheet—"clean coal" power plants (IGCC): www.energyjustice.net/coal/igcc/factsheet_long.pdf (accessed June 2008).
- Environment Canada Facility GHG Reporting Search Data Web site, www.ec.gc.ca/pdb/ghg/onlineData/dataSearch e.cfm (accessed August 2009).
- Gray, M.L., Champagne, K.J., Soong, Y., Baltrus, J., Pennline, H., Stevens, R.W. Jr., Khatri, R., Chang, S.S.C., and Khan S., 2003, New solid amine sorbents, *in* Annual Conference on carbon sequestration, 2nd, May 5–8, 2003, Alexandria, Virginia, Proceedings.
- Hawkeye Energy, 2008, Production process. www.hawkeye-energy.com/aspx/production process.aspx (accessed July 2008).
- Herzog, H.A., 2006, GIS-based model for CO₂ pipeline transport and source–sink matching optimization: Presented at the WESTCARB Annual Business Meeting, Phoenix, Arizona, www.westcarb.org/Phoenix_pdfs/finalpdfs-11-08-06/17-Herzog_GIS.pdf (accessed May 2007).
- Iijima, M., 2002, CO₂ capture from gas power plants: Presented at the IEA advisory group on oil and gas technology, Stavanger, Norway, November 15, 2002.
- Imai, N., 2003, Advanced solvent to capture CO₂ from flue gas: Presented at the 2nd International Forum on Geologic Sequestration of CO₂ in Deep, Unminable Coal Seams "coal-seq," Washington, D.C., March 7, 2003.
- Integrated Environmental Control Model, 2008, www.iecm-online.com (accessed July 2008).
- International Energy Agency Greenhouse Gas R&D Programme, 2008, CO₂ capture and storage RD&D projects database: www.co2captureandstorage.info/search.php (accessed July 2008).
- Jensen, M.D., Musich, M.A., Ruby, J.D., Steadman, E.N., and Harju, J.A., 2005, Carbon separation and capture: Grand Forks, North Dakota, Energy & Environmental Research Center, 27 p.
- Massachusetts Institute of Technology, 2007, CO₂ pipeline transport and cost model (Version 2), software user's guide: http://e40-hjh-server1.mit.edu/energylab/wikka.php? wakka=MIT (accessed June 2008).
- Metz, B., Davidson, O., de Coninck, H., Loos, M., and Meyer, L., eds., 2005, IPCC special report on carbon dioxide capture and storage: New York, Cambridge University Press, 431 p.
- New York Academy of Sciences, 2008, Coal without guilt? Technologies for zero emission power systems: Meeting report at http://64.233.167.104/search?q=cache:POXW x_mVaHMJ:www.nyas.org/ebrief/miniEB.asp%3FebriefID%3D720+CO2+produced+by+a +500-MW+coal-fired+power+plant&hl=en&ct=clnk&cd=3&gl=us (accessed July 2008).

- Power, 2008, Carbon capture—inside Alstom's chilled ammonia CO₂ capture system. www.powermag.com/SideBar.asp?y=2008&m=february&a=38-F_CC-Box1 (accessed July 2008).
- Powerspan, 2008, ECO₂TM technology overview: www.powerspan.com/technology/eco2_overview.shtml (accessed July 2008).
- Reddy, S., 2008, Econamine FG plusSM technology for postcombustion CO₂ capture: Presented at the 11th Meeting of the International Postcombustion CO₂ Capture Network, Vienna, Austria, May 20–21, 2008.
- Reddy, S., Scherffius, J., Freguia, S., and Roberts, C., 2003, Fluor's Econamine FG plusSM technology—an enhanced amine-based CO₂ capture process: Presented at the 2nd National Conference on Carbon Sequestration, Alexandria, Virginia, May 5–8, 2003.
- UOP LLC, 2008, UPO Benfield process. www.uop.com/objects/Benfield_process.pdf (accessed July 2008).
- U.S. Department of Energy Regional Carbon Sequestration Partnerships Capture and Transportation Working Group, 2008, CO₂ point source emission estimation methodologies summary: U.S. Department of Energy National Energy Technology Laboratory, 35 p.
- Van Holst, J., Politiek, P.P., Niederer, J.P.M., and Versteeg, G.F., 2006, CO₂ capture from flue gas using amino acid salts: Presented at the 8th International Conference on Greenhouse Gas Control Technologies; Trondheim, Norway, June 19–22, 2006.
- Veawab, A., Aroonwilas, A., Chakma, A., and Tontiwachwuthikul, P., 2001, Solvent formulation for CO₂ separation from flue gas streams, *in* National Conference on Carbon Sequestration, 1st, May 14–17, 2001, Washington, D.C., Proceedings.
- Worrell, E., Price, L., Martin, N., Hendriks, C., and Meida, L.O., 2001, Carbon dioxide emissions from the global cement industry: Annual Review of Energy and Environment, v. 26, p. 303–329.

APPENDIX A

MODEL SIMULATIONS OF THE CAPTURE OF CO₂ FROM ELECTRICITY-GENERATING STATIONS FOR EACH STATE OR PROVINCE WITHIN THE PCOR PARTNERSHIP REGION

MODEL SIMULATIONS OF THE CAPTURE OF CO₂ FROM ELECTRICITY-GENERATING STATIONS FOR EACH STATE OR PROVINCE WITHIN THE PCOR PARTNERSHIP REGION

This appendix presents the results of model simulations that were conducted for each state or province to examine the capture of CO₂ from its electricity-generating stations. The technical approach used is presented, followed by the model simulation results for each state or province.

TECHNICAL APPROACH

The electricity-generating stations were identified in each of the states and provinces of the Plains CO_2 Reduction (PCOR) Partnership. Only those stations larger than 100 MW were targeted for CO_2 capture. For each of these stations, the CO_2 emissions were estimated (tons per year) and the characteristics of the individual generating units were summarized, including information such as the type and size of each boiler, the type of fuel used, and the existence and type of particulate and SO_2 control, if any.

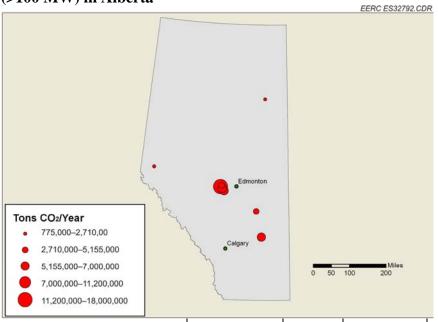
The costs associated with CO₂ capture include several discrete cost elements. First, the cost of CO₂ capture was estimated using a monoethanolamine (MEA) scrubbing system. Costs associated with removal efficiencies of 10%, 25%, 50%, 75%, and 90% were estimated. Second, if a generating unit did not have sulfur control, the cost of incorporating a wet flue gas desulfurization (WFGD) unit was added to the cost of CO₂ capture because it was determined that it was more cost-effective to remove the SO₂ prior to CO₂ capture than to pay the increase in operating costs associated with processing of the SO₂-laden gas in the MEA system. This cost penalty is associated with the increase in solvent degradation that occurs in the MEA scrubbing system as a result of the presence of SO₂. Lastly, in addition to these operating costs, the costs associated with replacing the power that was consumed as part of the CO₂ recovery operations, i.e., replacement power, was also estimated and included in the cost analysis. This cost estimate was based on the use of either scrubbed coal in the existing generation unit or the addition of an integrated gasification combined cycle (IGCC) to generate the replacement power. In both cases, it was assumed that the capture of the additional CO₂ that was generated during this additional power production would take place at the capture levels cited above.

The Integrated Environmental Control Model (IECM) was used to estimate the capital and operating costs of the MEA scrubbing system as well as the cost of the WFGD unit. The cost for the replacement of the power that is consumed by CO₂ capture was estimated using a combination of sources. For IGCC, the cost range was estimated to be \$2431 to \$3593 per kW. The low end of this range was generated using the IECM while the upper end of the range came from the Excelsior Energy Mesaba Project. The generation of replacement power using scrubbed coal was estimated as \$2279 to \$2726 per kW. The low end of this range came from Energy Information Administration (EIA) assumptions to the Annual Energy Outlook 2008; the upper range was estimated using the IECM.

PRESENTATION OF MODEL SIMULATION RESULTS

For each state/province, the characteristics of the generating units greater than 100 MW are summarized, and their locations are provided on a map of the state/province. The CO₂ emissions from these units are provided, expressed as annual emission rates (i.e., tons per year). The annual quantities of CO₂ (tons per year) that are captured are also presented for a range of capture percentages, i.e., 10%, 25%, 50%, 75%, and 90%, and these reductions are also expressed as the percentage of the total CO₂ emissions from all of the generating stations (<100 MW as well as >100 MW) and of the total CO₂ emissions from all CO₂ sources (electricity generation plus all others) within the state/province of interest. The energy penalty associated with the capture of CO₂ (MEA scrubber and WFGD unit) is also presented for each level of removal. The penalty is expressed as the percentage of gross output of the generating units. However, the capital cost for providing replacement power is only presented for the 90% removal scenario, without consideration of the additional operating and maintenance costs. Because of the uncertainty associated with this cost element of CO₂ capture, the cost of providing this replacement power is assumed to be the average cost of the minimum and maximum replacement costs estimated based on the use of scrubbed coal in the existing generating units or the addition of an IGCC system. Finally, costs for the capture of the CO₂ are also provided in terms of \$ per ton of CO₂ removed as well as the annual levelized cost. These cost estimates include estimates of both capital as well as operating and maintenance costs.

Alberta


Alberta has 19 electricity-generating stations that emit more than 54,300,000 tons of CO₂ annually. Of these stations, eight are larger than 100 MW. These eight generating stations consist of 19 separate generating units, the characteristics of which are summarized in Table A-1 along with a map showing their locations within the province. The units are very similar in that they each burn subbituminous coal in a tangentially fired (T-fired) boiler and have a cold-side electrostatic precipitator (ESP) for particulate matter (PM) control. It was found that most of the units are not equipped with any SO_x control. Therefore, the cost of incorporating a WFGD unit was added to the cost of capturing CO₂ for the appropriate amount of flue gas treated to obtain the different CO₂ capture rates. The units vary in size from 100 MW (McKay River Power Plant) to the Genesee 3 Station, which has a capacity of 450 MW. The total generation capacity of the units considered for CO₂ capture in the Alberta region was 6159 MW. The CO₂ generated annually from these 19 units is approximately 45,700,000 tons, which is about 84% of the CO₂ generated from all 19 generating stations in Alberta.

The results from the model simulations (Table A-2) show a significant cost and energy penalty for capturing 90% of the CO₂ emitted from these units. The energy that would be consumed at this level of capture is 2189 MW, which is 35.5% of the current gross output of these units, as compared to an energy consumption of 243 MW (about 4% of the gross output) at the 10% capture level. At the average projected cost of power replacement, \$2936/kW (i.e., the average of the minimum cost projection using scrubbed coal, \$2431/kW, and the maximum of using IGCC, \$3593/kW), the total cost for power replacement at the 90% capture level is estimated to be about \$6.4 billion. Figure A-1 shows the predicted power requirement (expressed as MW) as a function of the percentage of the CO₂ that is captured. The figure also shows the

total cost of CO₂ capture (\$ per ton of CO₂), again as a function of the percentage of CO₂ that is captured. From this graphic, it can be seen that the cost of CO₂ capture (\$/ton) is relatively high (\$94/ton) at low capture rates, i.e., 10%, but drops quickly as the percentage of CO₂ captured is increased, leveling off at \$51 to \$46/ton for 50% to 90% CO₂ capture, respectively. This downward trend is observed because of the ability to spread the high capital investment over larger quantities of carbon dioxide increases as the amount of carbon dioxide capture increases. In terms of levelized annual costs, Figure A-1 shows that it increases from \$250 M per year (10% CO₂ capture) to \$1587 M per year (90% CO₂ capture).

At the highest rate of capture (90%), there would be an estimated 41,105,000 tons of CO_2 captured, or roughly 87% of all the CO_2 produced by the 15 electricity-generating stations in Alberta. Given that the total CO_2 produced in Alberta is roughly 115,600,000 tons per year, a 90% CO_2 capture achieved from the >100 MW electricity-generating stations yields an overall CO_2 reduction of 35.5% for the province. As noted above, the total CO_2 capture cost required to achieve this reduction would be \$1.6 billion annually plus the additional cost of replacing the lost generation capacity.

Table A-1. Location and Summary of Characteristics of Electricity-Generating Units (>100 MW) in Alberta

	CO_2	Unit				
	Emissions,	Size,		Boiler	SO_2	PM
Unit ID	tons/year ¹	MW	Fuel Type ²	Type ³	Control	Control
Sundance Gen Unit 1	16,343,514	300	Subbitum.	T-fired	None	C-ESP ⁴
Sundance Gen Unit 2		300	Subbitum.	T-fired	None	C-ESP
Sundance Gen Unit 3		375	Subbitum.	T-fired	None	C-ESP
Sundance Gen Unit 4		375	Subbitum.	T-fired	None	C-ESP
Sundance Gen Unit 5		375	Subbitum.	T-fired	None	C-ESP
Sundance Gen Unit 6		387	Subbitum.	T-fired	None	C-ESP
Genesee Station 1	6,733,497	410	Subbitum.	T-fired	None	ESP
Genesee Station 2		410	Subbitum.	T-fired	None	ESP
Genesee Station 3		450	Subbitum.	T-fired	DFGD ⁵	FF^6
Sheerness Gen Station No. 1	6,600,745	380	Subbitum.	T-fired	None	C-ESP
Sheerness Gen Station No. 1		380	Subbitum.	T-fired	None	C-ESP
Keephills Gen Plant 1	5,989,611	403	Subbitum.	T-fired	None	C-ESP
Keephills Gen Plant 2		403	Subbitum.	T-fired	None	C-ESP
Battle River Gen Station 1	5,155,346	148	Subbitum.	T-fired	None	C-ESP
Battle River Gen Station 2		148	Subbitum.	T-fired	None	C-ESP
Battle River Gen Station 3		370	Subbitum.	T-fired	None	C-ESP
Wabamun Gen Plant	3,165,672	300	Subbitum.	T-fired	None	NA^7
H. R. Milner Gen Station	959,369	145	Subbitum.	W-fired	None	FF
McKay River Power Plant	775,015	100	Subbitum.	NA	None	NA

¹ As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

² Subbituminous coal.

³ W-fired: wall-fired.

<sup>W-filed: Wall-filed:
Cold-side ESP.
Dry flue gas desulfurization.
Fabric filter.</sup>

⁷ Not applicable.

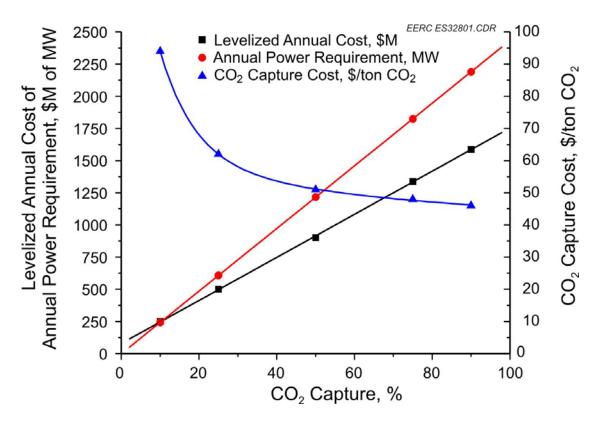


Figure A-1. Results from implementing CO_2 capture on electricity-generating units larger than 100~MW in Alberta.

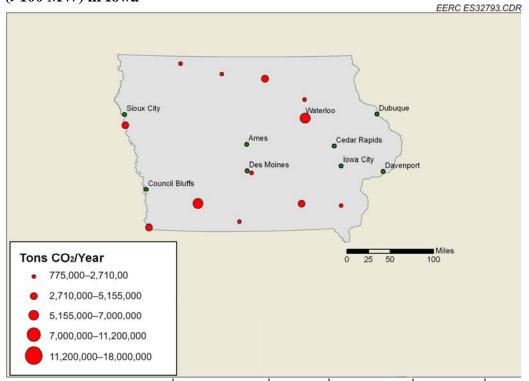
_	\sim
	~
- 1	

Total Levelized

Table A-2. Summary of CO ₂ Capture Costs for >100 MW Electricity-Generating Stations in Alberta												
Carbon Capture, %		10	25 50 75						90			
45,672,247 tons CO ₂ emissions per year for units of >100 MW												
CO ₂ Captured												
tons per year	4,56	57,225	11,4	18,062	22,83	86,124	31,2	54,186	41,105	,023		
Energy Assessment												
Gross Electrical	6	159	6	159	61	.59	6	159	615	9		
Output, MW												
Auxiliary Load, MW												
Amine Scrubber,	2	225	562		1125		1687		2025			
MW												
WFGD Use, MW		18		46	91 137		164	1				
Total Aux Load,	2	243	6	508	12	216	1	824	218	9		
MW												
% of Gross Output		3.9	9	9.9	19	19.7 29.6		29.6	35.5			
		\$/ton		\$/ton		\$/ton				\$/ton		
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	\$/ton CO ₂	\$M/yr	CO_2		
Annual Cost SO ₂	178	39	206	18	251	11	297	9	325	8		
Removal												

Annual Cost^a

a Includes the costs associated with both SO₂ and CO₂ removal.


Iowa

Iowa has 23 electricity-generating stations that emit more than 39,078,000 tons of CO₂ annually. Of these 23 stations, 11 are larger than 100 MW. The 11 generating stations consist of 13 separate generating units, the characteristics of which are summarized in Table A-3 along with a map showing their locations within the state. The units are very similar: the primary fuel is subbituminous coal and the boiler is tangentially fired, with a C-ESP for PM control. Most of the units are not equipped with any sort of SO_x control. Therefore, the cost of incorporating a WFGD unit was added to the cost of capturing CO₂ for the appropriate amount of flue gas treated to obtain the different CO₂ capture rates. The units varied in size from 148 MW (George Neal North 1) to 740 MW (Louisa Station). The total generation capacity of the units considered for CO₂ capture is 5165 MW. The CO₂ generated from these 13 units totals approximately 36,500,000 tons of CO₂ per year, or roughly 93% of the CO₂ generated from all 23 generating stations in Iowa (39,078,000 tons per year).

The results from the model simulations (Table A-4) show an energy penalty of as much as 33% for capturing 90% of the CO₂ emitted from these electricity-generating units. The cost associated with this energy requirement of 1712 MW (Table A-4) is estimated at about \$5.2 billion (capital costs only), based on the average power cost of \$2936 per kW. The observed trends in the power penalty and cost data, shown in Figure A-2, are similar to what was observed in Alberta, with the highest cost for CO₂ capture at the capture level of 10% (i.e., \$86 per ton) followed by a leveling of the costs at \$51 and \$48 per ton for capture rates of 50% and 90%, respectively, and the levelized costs ranging from \$199 million per year (for 10% CO₂ capture) to \$1357 million per year (90% capture).

At the highest rate of capture, there would be an estimated 32,867,000 tons of CO_2 captured, which is 84% of all the CO_2 produced by the 23 electricity-generating stations in Iowa. Given that the total CO_2 produced in Iowa is estimated at about 54,600,000 tons per year, a 90% CO_2 capture achieved from the >100 MW electricity-generating stations yields an overall CO_2 reduction of 60% for the state. The total CO_2 capture cost required to achieve this reduction would be about \$1.4 billion annually plus the additional cost of replacing the lost generation capacity.

Table A-3. Location and Summary of Characteristics of Electricity-Generating Units (>100 MW) in Iowa

	CO_2	Unit				
	Emissions,	Size,		Boiler	SO_2	PM
Unit ID	tons/year ¹	MW	Fuel Type	Type	Control	Control
George Neal North 1	7,043,476	148	Subbitum.	Cyclone	None	H-ESP ²
George Neal North 2		350	Subbitum.	W-fired	None	C-ESP
George Neal North 3		550	Subbitum.	W-fired	None	C-ESP
Council Bluffs 3	5,786,096	725	Subbitum.	W-fired	None	C-ESP
Louisa	4,846,897	740	Subbitum.	W-fired	None	H-ESP
Ottumwa 1	4,714,088	726	Subbitum.	T-fired	None	C-ESP
George Neal South	4,673,886	650	Subbitum.	W-fired	None	C-ESP
Muscatine	2,006,515	180	Subbitum.	T-fired	WFGD ³	C-ESP
Lansing 4	1,658,922	263	Subbitum.	W-fired	None	ESP
Burlington	1,466,982	212	Subbitum.	T-fired	None	NA
Sutherland	1,394,454	157	Subbitum.	NA	None	NA
Prairie Creek	1,197,431	245	Subbitum.	NA	None	NA
Milton L Kapp 2	1,188,717	219	Subbitum.	T-fired	None	ESP

¹ As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data. ² Hot-side ESP.

³ Wet flue gas desulfurization.

•	
۲	_
	ı
	_

Table A-4. Summary of	CO ₂ Cap	ture Costs	for >100	MW Elect	tricity-Gen	erating Sta	tions in Io	wa		
Carbon Capture, %		10		25	5	50	75	90		
36,519,363 tons of carbon dioxide emissions per year for units of >100 MW										
CO ₂ Captured										
tons per year	3, 65	51,936	9,12	29,840	18,25	9,680	27,38	39,520	32,86	57,420
Energy Assessment										
Gross Electrical	5	165	5	165	51	.65	51	165	51	65
Output, MW										
Auxiliary Load, MW										
Amine Scrubber,	1	.76	4	141	882		1323		1588	
MW										
WFGD Use, MW		14		35	6	59	104		12	24
Total Aux. Load,	1	.90	4	176	9:	51	1427		1712	
MW										
% of Gross Output	3	3.7	Ç	9.2	18	18.4		7.6	33.1	
		\$/ton		\$/ton		\$/ton		\$/ton		\$/ton
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2
Annual Cost SO ₂	115	31	136	15	170	9	205	7	225	7
Removal										
Total Levelized	199	86	418	61	759	51	1143	49	1357	48
Annual Cost ^a										

Annual Cost^a

a Includes the costs associated with both SO₂ and CO₂ removal.

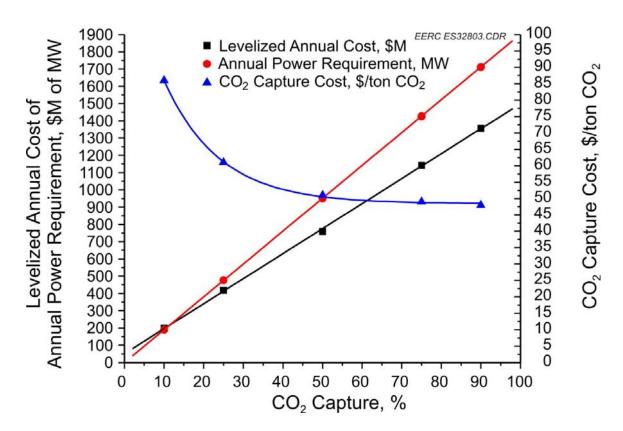


Figure A-2. Results of implementing CO_2 capture on electricity-generating units larger than 100 MW in Iowa.

Minnesota

Minnesota has 28 electricity-generating stations that emit more than 40,400,000 tons of CO₂ annually. Of these 28 stations, eight are larger than 100 MW. The eight generating stations consist of 15 separate generating units, the characteristics of which are summarized in Table A-5 along with a map showing their locations within the state. The units vary in terms of boiler type, size, and existing pollution control equipment. The units all fire a subbituminous coal as the primary fuel and a significant number of the units are equipped with SO_x control. In those instances where there is no SO_x control, a WFGD unit was added to reduce the overall cost of CO₂ capture. The generating units vary in size from 100 MW (High Bridge 5) to 900 MW (Sherco 3). The total generation capacity of the units considered for CO₂ capture is 5241 MW. The CO₂ generated from these 15 units totals approximately 40,200,000 tons of CO₂ per year, roughly 99% of the CO₂ generated from all 28 generating stations in Minnesota.

The results from the model simulations (Table A-6) show an energy penalty of 34.5% for capturing 90% of the CO₂ emitted from these electricity-generating units. The cost associated with this energy requirement of 1808 MW is estimated at roughly \$5.3 billion (capital costs only), based on the average power cost of \$2936 per kW. The predicted trends in the power penalty and cost data (shown in Figure A-3) are similar to what was previously observed for other states/provinces, with the highest cost for CO₂ capture at the capture level of 10% (i.e., \$69 per ton) followed by a leveling of the costs at \$44 and \$41 per ton for capture rates of 50% and 90%, respectively, and the levelized costs ranging from \$207 million per year (for 10% CO₂ capture) to \$1414 million per year (for 90% capture).

At the highest rate of capture, there would be an estimated 37,660,000 tons of CO_2 captured, which is 93% of all the CO_2 produced by the 28 electricity-generating stations in Minnesota. Given that the total CO_2 produced in Minnesota is estimated at nearly 59,100,000 tons per year, a 90% CO_2 capture achieved from the >100 MW electricity-generating stations yields an overall CO_2 reduction of nearly 64% for the state. The total CO_2 capture cost required to achieve this reduction would be \$1.4 billion annually plus the additional cost of replacing the lost generation capacity.

Table A-5. Location and Summary of Characteristics of Electricity-Generating Units (>100 MW) in Minnesota

Tons CO2/Year

- 775,000-2,710,00

- 2,710,000-5,155,000

- 5,155,000-7,000,000

- 7,000,000-11,200,000

- 11,200,000-18,000,000

	CO_2	Unit				
	Emissions,	Size,		Boiler	SO_2	PM
Unit ID	tons/year ¹	MW	Fuel Type	Type	Control	Control
Sherburne County No. 1	18,003,648	750	Subbitum.	T-fired	WFGD	C-ESP
Sherburne County No. 2		750	Subbitum.	T-fired	WFGD	C-ESP
Sherburne County No. 3		900	Subbitum.	W-fired	Dry lime	FF
Boswell Energy Center No. 1	8,107,209	364	Subbitum.	T-fired	WFGD	C-ESP
Boswell Energy Center No. 2		558	Subbitum.	T-fired	FGD	C-ESP
Allen S. King No. 1	3,450,149	542	Subbitum.	Cyclone	None	C-ESP
Allen S. King No. 2	1,856,715	230	Subbitum.	NA	None	NA
Black Dog No. 2	2,125,518	140	Subbitum.	FBC^2	None	C-ESP
Black Dog No. 3		110	Subbitum.	W-fired	None	C-ESP
Black Dog No. 4		185	Subbitum.	W-fired	None	C-ESP
High Bridge No. 5	1,788,938	100	Subbitum.	W-fired	None	C-ESP
High Bridge No. 6		156	Subbitum.	W-fired	None	C-ESP
Riverside	2,257,109	216	Subbitum.	Cyclone	None	C-ESP
Taconite Harbor Energy	1,723,608	130	Subbitum.	NA	None	NA
Syl Laskin	958,729	110	Subbitum.	T-fired	FGD	NA

As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

²FBC: fluidized-bed combustor.

A-1

Table A-6. Summary of CO₂ Capture Costs for >100 MW Electricity-Generating Stations in Minnesota

Table A-0. Summary of CO ₂ Capture Costs for >100 MW Electricity-Generating Stations in Winnesota														
Carbon Capture, %		10		25	5	50	,	75		90				
40,272,000 tons of carbon dioxide emissions per year for units of >100 MW														
CO ₂ Captured														
tons per year	4,02	27,200	10,0	68,000	20,13	86,000	30,20	04,000	36,2	44,800				
Energy Assessment														
Gross Electrical	5	241	5.	241	52	241	52	241	5:	241				
Output, MW														
Auxiliary Load, MW														
Amine Scrubber,	1	95	4	88	977		1465		1758					
MW														
WFGD Use, MW		6		14	2	28	4	41	50					
Total Aux Load,	2	201	502		1004		1:	507	1	808				
MW														
% of Gross Output	3	3.8	Ç	9.6	19	9.2	2	8.8	3	4.5				
		\$/ton		\$/ton		\$/ton								
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	\$/ton CO ₂	\$M/yr	\$/ton CO ₂				
Annual Cost SO ₂	82	20	91	9	106	5	121	4	130	3				
Removal														
Total Levelized	207	69	435	50	811	44	1191	42	1414	41				
Annual Cost ^a														
a T., . 1	: 41- 1 41- C	0100	1											

^a Includes the costs associated with both SO₂ and CO₂ removal.

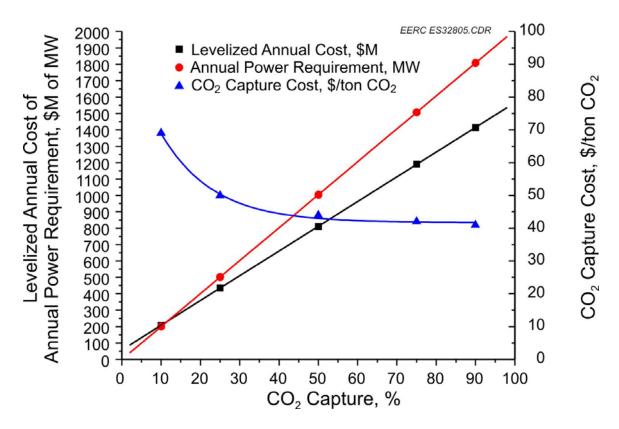
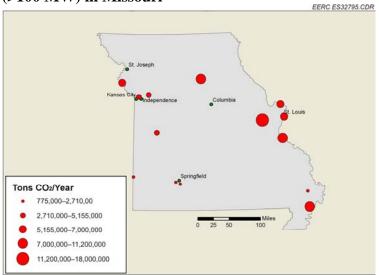


Figure A-3. Results from implementing ${\rm CO_2}$ capture on electricity-generating units larger than 100 MW in Minnesota.

Missouri


Missouri has 36 electricity-generating stations that emit more than 83,200,000 tons of CO₂ annually. Of these 36 stations, 14 are larger than 100 MW. These 14 generating stations consist of 27 separate generating units, the characteristics of which are summarized in Table A-7 along with a map showing their locations within the state.

The units vary in terms of boiler type and size and existing pollution control equipment. The units primarily fire a subbituminous coal as the primary fuel, with three stations burning a bituminous—subbituminous coal blend and one station burning pure bituminous coal. It was found that almost none of the units is equipped with any SO_x control systems. In cases where there is no SO_x control, a WFGD unit was added to reduce the overall cost of CO_2 capture. The units vary in size from 105 MW (James River 5) to 670 MW (Latan 1 and Thomas Hill 3). The total generation capacity of the units considered for CO_2 capture is 10,836 MW. The CO_2 generated from these 27 units totals approximately 79,030,000 tons of CO_2 per year, roughly 95% of the CO_2 generated from all 36 generating stations in the state (83,200,000 tons per year).

The results from the model simulations are summarized in Table A-8. These results show an energy penalty of 33.5% for capturing 90% of the CO₂ emitted from these units. The cost associated with this energy penalty of 3629 MW is estimated to be \$10.6 billion (capital costs, only), based on an average power cost of \$2936 per kW. The predicted trends in the power penalty and cost of CO₂ capture as a function of the capture percentage of CO₂ are presented in Figure A-4. The power penalty increases linearly with the percentage of carbon capture, increasing from 403 MW (3.7% of the total output of the units that are >100 MW) to 3629 MW (33.5% of the total output of the units that are >100 MW). This is shown in Figure A-4. The figure also shows that, at the same time, the cost of CO₂ capture decreases from \$83/ton of CO₂ captured (10% CO₂ capture rate) to between \$49 and \$46 per ton of CO₂ captured for capture rates of 50% and 90%, respectively, while the levelized annual cost, not including the cost of replacement power, increases from \$403 million to \$2.75 billion.

At the highest rate of capture, there would be approximately 71,124,000 tons of CO₂ captured, which is roughly 85% of all the CO₂ produced by the 36 electricity-generating stations in Missouri. Given that the total CO₂ produced in the state from all sources is 97,600,000 tons per year, a 90% CO₂ capture rate for electricity-generating stations >100 MW yields an overall CO₂ reduction of 73% for the entire state. As noted above, the cost of achieving this CO₂ capture is estimated to be approximately \$2.8 billion annually plus the additional cost of replacing the lost generation capacity.

Table A-7. Location and Summary of Characteristics of Electricity-Generating Units (>100 MW) in Missouri

	CO_2								
	Emissions,	Unit Size,		Boiler	SO_2	PM			
Unit ID	tons/year ¹	MW	Fuel Type	Type	Control	Control			
Labadie No. 1	17,458,154	574	Subbitum.	T-fired	None	C-ESP			
Labadie No. 2		574	Subbitum.	T-fired	None	C-ESP			
Labadie No. 3		621	Subbitum.	T-fired	None	C-ESP			
Labadie No. 4		621	Subbitum.	T-fired	None	C-ESP			
Thomas Hill No. 1	8,692,178	180	Subbitum.	Cyclone	None	C-ESP			
Thomas Hill No. 2		285	Subbitum.	Cyclone	None	C-ESP			
Thomas Hill No. 3		670	Subbitum.	W-fired	None	C-ESP			
Rush Island No. 1	8,646,702	620	Subbitum.	T-fired	None	C-ESP			
Rush Island No. 2		620	Subbitum.	T-fired	None	C-ESP			
New Madrid No. 1	7,757,564	600	Subbitum.	Cyclone	None	C-ESP			
New Madrid No. 2		600	Subbitum.	Cyclone	None	C-ESP			
Meramec No. 1	6,628,037	138	BitumSub.	T-fired	None	C-ESP			
Meramec No. 2		138	BitumSub.	T-fired	None	C-ESP			
Meramec No. 3]	289	BitumSub.	F-fired ³	None	C-ESP			
Meramec No. 4		360	BitumSub.	F-fired	None	C-ESP			
Sioux No. 1	6,273,478	550	BitumSub.	Cyclone	None	C-ESP			
Sioux No. 2		550	BitumSub.	Cyclone	None	C-ESP			
Latan No. 1	5,397,589	670	Subbitum.	W-fired	None	C-ESP			
Hawthorn No. 5	4,532,076	476	Subbitum.	T-fired	None	C-ESP			
Montrose No. 1	3,803,834	170	Subbitum.	T-fired	None	C-ESP			
Montrose No. 2		164	Subbitum.	T-fired	None	C-ESP			
Montrose No. 3		176	Subbitum.	T-fired	None	C-ESP			
Sibley No. 3	3,167,591	411	Subbitum.	Cyclone	None	C-ESP			
Sikeston No. 1	2,246,389	261	Subbitum.	W-fired	None	C-ESP			
James River No. 5	1,647,963	105	Bitum. ⁴	W-fired	None	C-ESP			
Asbury No. 1	1,604,015	213	BitumSub.	Cyclone	None	C-ESP			
Southwest-Springfield	1,433,865	200	Subbitum.	W-fired	FGD	C-ESP			
As also are in the DCOD Destroyable Decision Council System (DCC @ 2007 EEDC Foundation) from									

As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

² Bitum.—Sub.: mix of bituminous and subbituminous coals.
³ F-fired: front-fired.
⁴ Bitum.: bituminous coal.

A-1

Table A-8. Summary of CO₂ Capture Costs for >100 MW Electricity-Generating Stations in Missouri

Carbon Capture, %	1	10		25	T	0	1	75	90		
, our cupture, /o					issions per		-				
CO ₂ Captured						/					
tons per year	7,90	7,902,708 19,756,771		39,513,542		59,270,313		71,124,375			
Energy Assessment											
Gross Electrical Output, MW	10)836	10836		10836		10836		10836		
Auxiliary Load, MW											
Amine Scrubber, MW	3	372		930		1861		2792		3350	
WFGD Use, MW		31	,	78	1:	155		233		279	
Total Aux Load, MW	4	103	1008		20	16	3024		3629		
% of Gross Output	3	3.7	9.3		18.6		27.9		33.5		
Cost of Capture	\$M/yr	\$/ton CO ₂	\$M/yr	\$/ton CO ₂	\$M/yr	\$/ton CO ₂	\$M/yr	\$/ton CO ₂	\$M/yr	\$/ton CO ₂	
Annual Cost SO ₂ Removal	251	32	298	15	377	10	456	8	503	7	
Total Levelized Annual Cost	403	83	848	58	1548	49	2314	47	2752	46	

^a Includes the costs associated with both SO₂ and CO₂ removal.

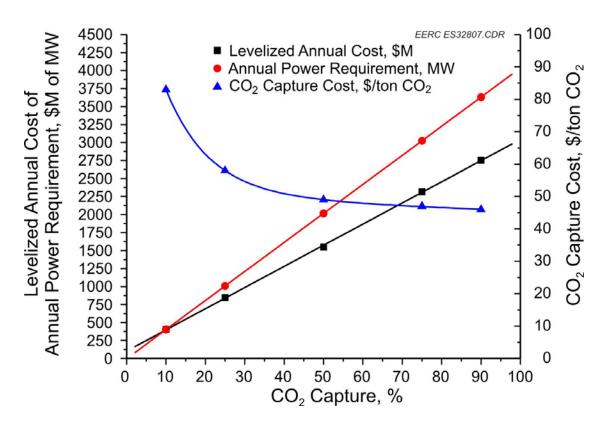
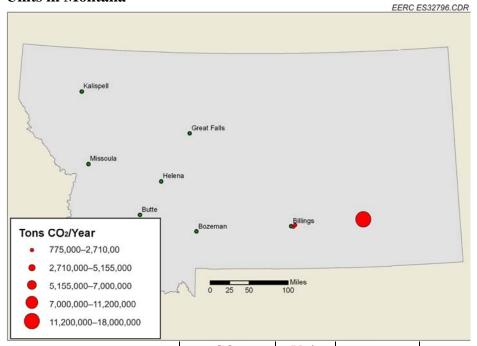


Figure A-4. Results from implementing CO₂ capture on electricity-generating units larger than 100 MW in Missouri.

Montana


Only the eastern half of Montana is contained in the PCOR Partnership region. In that area, Montana has six electricity-generating stations that emit more than 20,970,000 tons of CO₂ annually. Of these six stations, two are larger than 100 MW: Colstrip and J.E. Corette. The two generating stations consist of five separate generating units, the characteristics of which are summarized in Table A-9 along with a map showing their locations within the state. The units are the same in terms of boiler design and fuel type. All of the units, except the unit at the J.E. Corette Station, are equipped with SO_x control equipment. As such, a WFGD unit was added to this unit to reduce the overall cost of capturing CO₂. The units vary in size from 191 MW (J.E. Corette) to 778 MW (Colstrip 3 and 4). The total generation capacity of the units considered for CO₂ capture is 2467 MW. The CO₂ generated from these five units is approximately 19,152,000 tons of CO₂ per year (20,105,280 tons per year), roughly 91% of the CO₂ generated from all six generating stations in Montana.

The results from the model simulations are summarized in Table A-10. These results indicate that there is an energy penalty of 34.4% associated with capturing 90% of the CO_2 emitted from these units. The cost penalty associated with this energy requirement of 849 MW is estimated at \$2.5 billion (capital costs, only), based on an average power cost of \$2936/kW. The predicted trends in the power penalty and cost of CO_2 capture as a function of the capture percentage of carbon dioxide are presented in Figure A-5. The power penalty increases linearly with the percentage of carbon capture, increasing from 95 MW (3.9% of the total output of the units that are >100 MW) to 849 MW (34.4% of the total output of the units that are >100 MW).

At the same time, the cost of CO₂ capture decreases from \$49/ton of CO₂ captured (10% CO₂ capture rate) to between \$37 and \$36 per ton of CO₂ captured for capture rates of 50% and 90%, respectively, while the levelized annual cost, not including the cost of replacement power, increases from \$89 to \$635 million. It should be noted that the cost of CO₂ capture of \$36 to \$49 per ton of CO₂ captured is smaller than in the other states/provinces of the region. This is primarily due to the presence of SO₂ control equipment on four of the five units targeted for CO₂ capture, which represents about 92% of the total MW output of these five units.

At the highest rate of capture, there would be approximately 18,094,752 tons of CO_2 captured, which is roughly 86% of all the CO_2 produced by the six electricity-generating stations in Montana. Given that the total CO_2 produced in the state from all sources is about 23,700,000 tons per year, a 90% CO_2 capture rate for electricity-generating stations >100 MW yields an overall CO_2 reduction of 76% for the entire state. As noted above, the cost of achieving this CO_2 capture is estimated to be approximately \$635 million annually plus the additional cost of replacing the lost generation capacity.

Table A-9. Location and Summary of Characteristics of Electricity-Generating (>100 MW) **Units in Montana**

	CO_2	Unit				
	Emissions,	Size,		Boiler	SO_2	PM
Unit ID	tons/year ¹	MW	Fuel Type	Type	Control	Control
Colstrip No. 1	17,638,217	360	Subbitum.	T-fired	WFGD	V-Scrub ²
Colstrip No. 2		360	Subbitum.	T-fired	WFGD	V-Scrub
Colstrip No. 3		778	Subbitum.	T-fired	WFGD	V-Scrub
Colstrip No. 4		778	Subbitum.	T-fired	WFGD	V-Scrub
J.E. Corette	1,514,122	191	Subbitum.	T-fired	None	C-ESP

¹ As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

Venturi scrubber.

A-2

Table A-10. Summary of CO₂ Capture Costs for >100 MW Electricity-Generating Stations in Montana

Table A-10. Summary of CO ₂ Capture Costs for >100 May Electricity-Generating Stations in Montana										
Carbon Capture, %		10		25	5	0		75	90	
20,979,036 tons of carbon dioxide emissions per year for units of >100 MW										
CO ₂ Captured										
tons per year	2,097,903		5,244,759		10,489,518		15,734,277		18,881,132	
Energy Assessment										
Gross Electrical	2467		2467		2467		2467		2467	
Output, MW										
Auxiliary Load, MW										
Amine Scrubber,	94		234		469		703		843	
MW										
WFGD Use, MW	1		2		3		5		6	
Total Aux Load,	95		236		472		708		849	
MW										
% of Gross Output	3	3.9	9.6		19.1		28.7		34.4	
		\$/ton		\$/ton		\$/ton		\$/ton		
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	\$/ton CO ₂
Annual Cost SO ₂	9	4	10	2	12	1	13	1	14	1
Removal										
Total Levelized	89	49	190	40	362	37	536	36	635	36
Annual Cost										
a T., . 1., . d	: 41- 1 41- C/	0 1	1							

^a Includes the costs associated with both SO₂ and CO₂ removal.

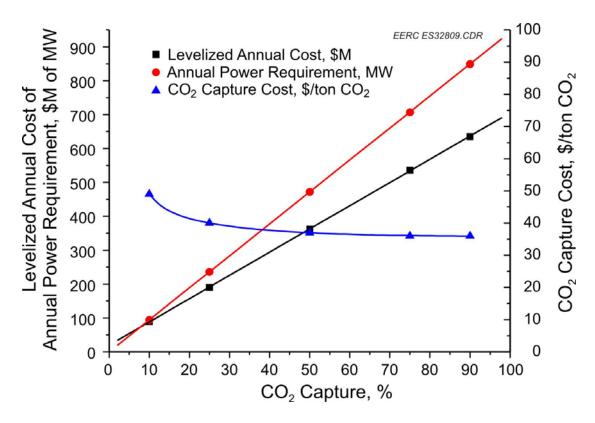
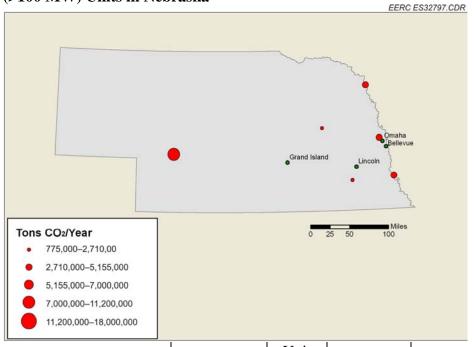


Figure A-5. Results from implementing CO_2 capture on electricity-generating units larger than 100~MW in Montana.


Nebraska

Nebraska has 12 electricity-generating stations that emit approximately 23,300,000 tons of CO₂ annually. Of these 12 stations, five are larger than 100 MW. The five generating stations consist of ten separate generating units, the characteristics of which are summarized in Table A-11 along with a map showing their locations within the state. None of the units is equipped with SO_x control equipment, requiring the addition of WFGD to each of the units to reduce the overall cost of CO₂ capture. The units in Nebraska vary in size from 100 MW (North Omaha 2 and 3) to 711 MW (Gerald Gentleman Station 1). The total power generation capacity of the units considered for CO₂ capture in the state of Nebraska was 2819 MW. The CO₂ generated from these ten units totals approximately 22,753,000 original tons of CO₂ per year, or roughly 86% of the CO₂ generated from all 12 generating stations in the state.

The results from the model simulations are summarized in Table A-12. These results indicate that there is an energy penalty of 35.9% associated with capturing 90% of the CO_2 emitted from these units. The cost associated with this energy penalty of 1012 MW is estimated to be approximately \$3.0 billion (capital costs only), based on an average power cost of \$2936/kW. The predicted trends in the power penalty and cost of CO_2 capture as a function of the capture percentage of CO_2 are presented in Figure A-6. The power penalty increases linearly with the percentage of carbon capture, increasing from 113 MW (4.0% of the total output of the units that are >100 MW) to 1012 MW (35.9% of the total output of the units that are >100 MW). At the same time, the cost of CO_2 capture decreases from \$96/ton of CO_2 captured (10% CO_2 capture rate) to between \$49 and \$48 per ton of CO_2 captured for capture rates of 75% and 90%, respectively, while the levelized annual cost, not including the cost of replacement power, increases from \$119 (10% capture) to \$784 million (90% capture).

At the highest rate of capture, there would be approximately 19,990,000 tons of CO_2 captured, which is roughly 85% of all the CO_2 produced by the 12 electricity-generating stations in Nebraska. Given that the total CO_2 produced in the state from all sources is 30,990,000 tons per year, a 90% CO_2 capture rate for electricity-generating stations >100 MW yields an overall CO_2 reduction of 64.5% for the entire state. As noted above, the cost of achieving this CO_2 capture is estimated to be approximately \$784 million annually plus the additional cost of replacing the lost generation capacity.

Table A-11. Location and Summary of Characteristics of Electricity-Generating (>100 MW) Units in Nebraska

	CO_2	Unit				
	Emissions,	Size,		Boiler	SO_2	PM
Unit ID	tons/year ¹	MW	Fuel Type	Type	Control	Control
Gerald Gentleman Station	11,192,809	711	Subbitum.	Dry	None	H-ESP
No. 1				bottom		
Gerald Gentleman Station		654	Subbitum.	Dry	None	NA
No. 2				bottom		
Nebraska City No. 1	4,703,184	565	Subbitum.	W-fired	None	C-ESP
North Omaha No. 2		100	Subbitum.	T-fired	None	C-ESP
North Omaha No. 3		100	Subbitum.	T-fired	None	C-ESP
North Omaha No. 4		125	Subbitum.	T-fired	None	C-ESP
North Omaha No. 5		200	Subbitum.	W-fired	None	C-ESP
Sheldon No. 1	1,895,755	119	Subbitum.	Cyclone	None	H-ESP
Sheldon No. 2		136	Subbitum.	Cyclone	None	H-ESP
Platte No. 1	895,952	109	Subbitum.	T-fired	None	H-ESP

As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

A-2

Table A-12. Summary of CO₂ Capture Costs for >100 MW Electricity-Generating Stations in Nebraska

Table A-12. Sullillary of		plure Cosi	2 101 >10	O MINI AN TELEG	cultity-Ger	iterating St	auons m r	edi aska		
Carbon Capture, %	-	10		25	5	0	7	75	9	0
	22,211	1,654 tons	of carbon	dioxide em	issions per	year for uni	ts of >100 l	MW		
CO ₂ Captured										
tons per year	2,22	1,165	5,552,914		11,10	5,827	16,65	58,741	19,990,481	
Energy Assessment										
Gross Electrical	28	819	28	819	28	19	28	319	28	19
Output, MW										
Auxiliary Load, MW										
Amine Scrubber,	1	04	2	259	51	18	776		932	
MW										
WFGD Use, MW		9	2	22	4	4	6	57	8	0
Total Aux Load,	1	13	2	281	50	52	8-	43	10	12
MW										
% of Gross Output	4	1.0	1	0.0	19	19.9 29.9		35.9		
		\$/ton		\$/ton		\$/ton		\$/ton		\$/ton
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2
Annual Cost SO ₂	93	42	107	19	130	12	153	9	167	8
Removal										
Total Levelized	119	96	247	64	458	53	664	49	784	48
Annual Cost ^a										

^a Includes the costs associated with both SO₂ and CO₂ removal.

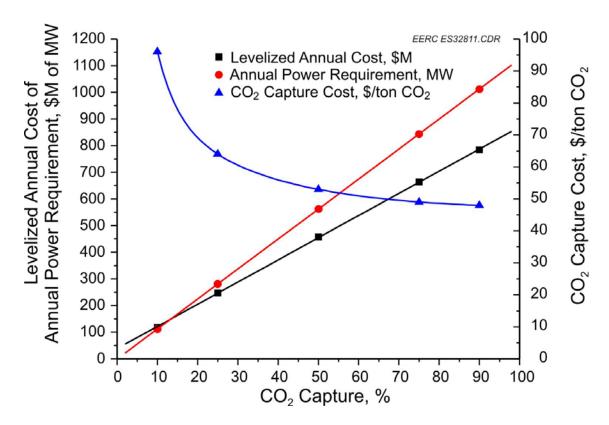
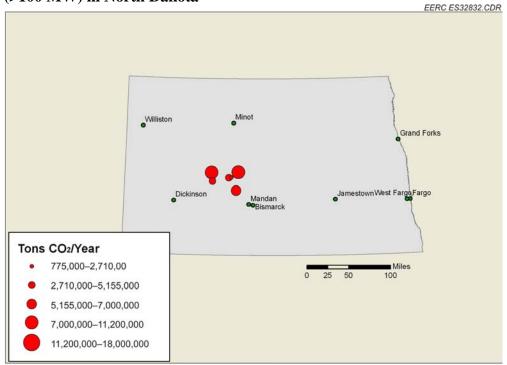


Figure A-6. Results from implementing CO₂ capture on electricity-generating units larger than 100 MW in Nebraska.


North Dakota

North Dakota has seven electricity-generating stations that emit approximately 35,950,000 tons of CO₂ annually. Of these seven stations, six are larger than 100 MW. The six generating stations consist of ten separate generating units, the characteristics of which are summarized in Table A-13 along with a map showing their locations within the state. In those instances where a generating unit has no SO_x control, a WFGD unit was added to reduce the overall cost of CO₂ capture. Compared to the other states and provinces in the PCOR partnership region, the electricity-generating units in North Dakota are different in that they burn lignite rather than subbituminous or bituminous coal. The units in North Dakota vary in size from 140 MW (Stanton 1) to 547 MW (Coal Creek Unit 2). The total generation capacity of the units considered for CO₂ capture in the state of North Dakota was 3843 MW. The CO₂ generated from these ten units is approximately 35,274,145 tons of CO₂ per year, roughly 98% of the CO₂ generated from all seven generating stations in North Dakota.

The results from the model simulations are summarized in Table A-14. These results indicate that there is an energy penalty of 47.2% associated with capturing 90% of the CO₂ emitted from these units. This is one of the highest energy penalties of all of the states and provinces and is due largely to the fuel that is burned in these units. Lignite produces more CO2 per Btu of coal, contains more moisture, and generates a larger volume of flue gas. These factors, combined with the unit configurations, result in a high energy penalty for the MEA CO₂ absorption system. The cost penalty associated with this energy requirement of 1815 MW is estimated at approximately \$5.3 billion (capital costs only), based on an average power cost of \$2936/kW. The predicted trends in the power penalty and cost of CO₂ capture as a function of the capture percentage of CO₂ is presented in Figure A-7. The power penalty increases linearly with the percentage of carbon capture, increasing from 202 MW (5.3% of the total output of the units that are >100 MW) to 1815 MW (47.2% of the total output of the units that are >100 MW). At the same time, the cost of CO₂ capture decreases from \$74/ton of CO₂ captured (10% CO₂ capture rate) to between \$52 and \$51 per ton of CO₂ captured for capture rates of 75% and 90%, respectively while the levelized annual cost, not including the cost of replacement power, increases from \$206 million (10% capture) to \$1.52 billion (90% capture).

At the highest rate of capture, there would be approximately 31,700,000 tons of CO_2 captured, which is roughly 88% of all the CO_2 produced by the seven electricity-generating stations in North Dakota. Given that the total CO_2 produced in the state from all sources is about 41,800,000 tons per year, a 90% CO_2 capture rate for electricity-generating stations >100 MW yields an overall CO_2 reduction of 76% for the entire state. As noted above, the cost of achieving this CO_2 capture is estimated to be approximately \$1.52 billion annually, plus the additional cost of replacing the lost generation capacity.

Table A-13. Location and Summary of Characteristics of Electricity-Generating (>100 MW) in North Dakota

	CO_2	Unit				
	Emissions,	Size,		Boiler	SO_2	PM
Unit ID	tons/year ¹	MW	Fuel Type	Type	Control	Control
Coal Creek No. 1	11,094,478	506	Lignite	T-fired	WFGD	ESP
Coal Creek No. 2		547	Lignite	T-fired	WFGD	ESP
Antelope Valley B1	8,696,067	435	Lignite	T-fired	DFGD	FF
Antelope Valley B2		435	Lignite	T-fired	DFGD	FF
Milton R. Young B1	5,862,979	235	Lignite	Cyclone	None	ESP
Milton R. Young B2		439	Lignite	Cyclone	WFGD	ESP
Leland Olds No. 1	4,808,205	216	Lignite	W-fired	None	ESP
Leland Olds No. 2		440	Lignite	Cyclone	None	ESP
Coyote	3,658,089	450	Lignite	Cyclone	DFGD	FF
Stanton No. 1	1,338,838	140	Lignite	W-fired	None	ESP

¹ As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

,	حر
Ĺ	١,
Ţ	$\vec{\mathcal{L}}$

Table A-14. Summary of CO₂ Capture Costs for >100 MW Electricity-Generating Stations in North Dakota

Carbon Capture, %	_	10		25		50	1	75	90)	
	35,274	1,145 tons	of carbon	dioxide em	issions per	year for uni	its of > 100	MW			
CO ₂ Captured											
tons per year	3,52	7,415	8,81	8,536	17,63	37,073	26,45	55,609	31,746,733		
Energy Assessment											
Gross Electrical	38	343	3	843	38	343	38	343	384	13	
Output, MW											
Auxiliary Load, MW											
Amine Scrubber,	1	197		492		985		1477		1772	
MW											
WFGD Use, MW		5		12	24		36		43	3	
Total Aux Load,	2	02	5	504	10	800	15	512	181	15	
MW											
% of Gross Output	5	5.3	1	3.1	26	26.2 39.3		47.	47.2		
		\$/ton		\$/ton		\$/ton		\$/ton		\$/ton	
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	
Annual Cost SO ₂	57	16	67	8	83	5	100	4	110	3	
Removal											
Total Levelized	206	74	447	58	863	54	1264	52	1519	51	
Annual Cost ^a											

^a Includes the costs associated with both SO₂ and CO₂ removal.

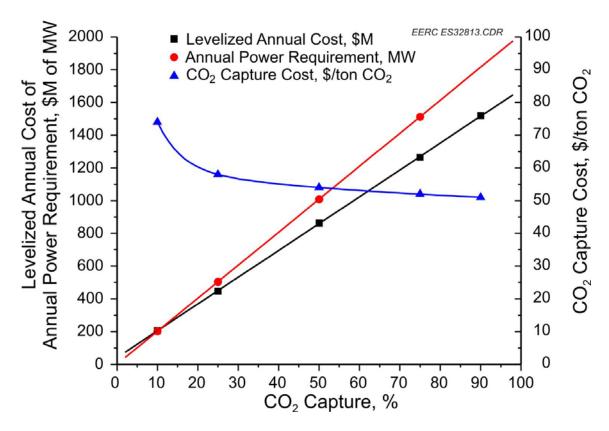
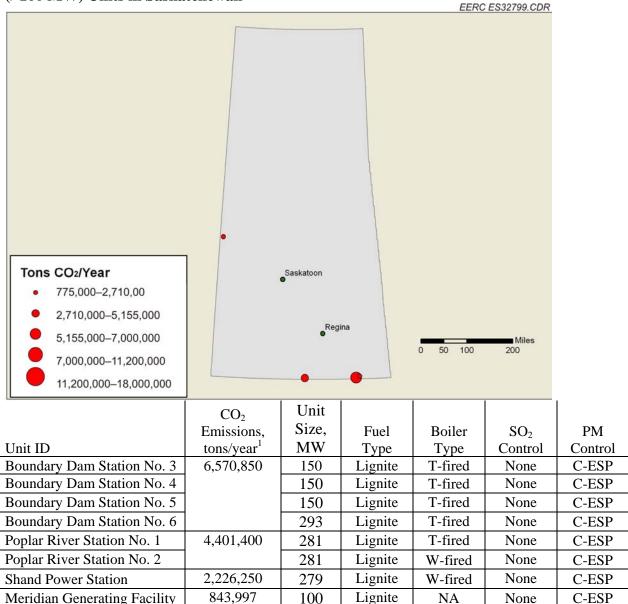


Figure A-7. Results from implementing ${\rm CO_2}$ capture on electricity-generating units larger than 100 MW in North Dakota.


Saskatchewan

Saskatchewan contains six electricity-generating stations that emit approximately 15,100,000 tons of CO₂ annually. Of these six stations, four are larger than 100 MW and consist of eight separate generating units, the characteristics of which are summarized in Table A-15 along with a map showing their locations within the province. In cases where there is no SO_x control, WFGD was added to reduce the overall cost of CO₂ capture. Electricity-generating stations in Saskatchewan, similar to those in North Dakota, burn lignite rather than subbituminous and bituminous coal. The units in Saskatchewan vary in size from 100 MW (Meridian) to 293 MW (Boundary Dam Station 6). The total generation capacity of the units considered for CO₂ capture in the province of Saskatchewan is 1684 MW. The CO₂ generated from these eight generating units is approximately 14,200,000 tons of CO₂ per year, roughly 94% of the CO₂ generated from all six generating stations in the province.

The results from the model simulations are summarized in Table A-16. These results indicate that there is an energy penalty of 38.5% associated with capturing 90% of the CO₂ emitted from these units. This energy penalty is similar to that predicted for North Dakota, reflecting the unique characteristics of lignite coal as it relates to carbon dioxide generation and capture. The cost associated with this energy requirement of 648 MW is estimated at approximately \$1.9 billion (capital costs only), based on an average power cost of \$2936/kW. The predicted trends in the power penalty and cost of CO₂ capture as a function of the capture percentage of carbon dioxide is presented in Figure A-8. The power penalty increases linearly with the percentage of carbon capture, increasing from 72 MW (4.3% of the total output of the units that are >100 MW) to 648 MW (38.5% of the total output of the units that are >100 MW). At the same time, the cost of CO₂ capture decreases from \$112/ton of CO₂ captured (10% CO₂ capture rate) to between \$59 and \$53 per ton of CO₂ captured for capture rates of 50% and 90%, respectively, while the levelized annual cost, not including the cost of replacement power, increases from \$87 million (10% capture) to \$558 million (90% capture).

At the highest rate of capture, there would be approximately 12,800,000 tons of CO_2 captured, which is roughly 88.2% of all the CO_2 produced by the six electricity-generating stations in Saskatchewan. Given that the total CO_2 produced in the province from all sources is 22,400,000 tons per year, a 90% CO_2 capture rate for electricity-generating stations >100 MW yields an overall CO_2 reduction of 57% for the entire province. As noted above, the cost of achieving this CO_2 capture is estimated to be approximately \$558 million annually, plus the additional cost of replacing the lost generation capacity.

Table A-15. Location and Summary of Characteristics of Electricity-Generating (>100 MW) Units in Saskatchewan

As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

>	
33	

|--|

Carbon Capture, %		10		25		60		75	90		
	14,230),697 tons	of carbon	dioxide em	issions per	year for uni	ts of >100	MW			
CO ₂ Captured											
tons per year	1,42	23,070	3,55	57,674	7,11:	5,349	10,67	73,023	12,807,627		
Energy Assessment											
Gross Electrical	10	684	1	684	16	584	16	584	1684	4	
Output, MW											
Auxiliary Load, MW											
Amine Scrubber,	(66		166		332		497		597	
MW											
WFGD Use, MW		6		14	2	28	۷	13	51		
Total Aux Load,	,	72	1	80	3	60	5	40	648	}	
MW											
% of Gross Output	4	1.3	1	0.7	21.4		32.1		38.5		
		\$/ton		\$/ton		\$/ton		\$/ton		\$/ton	
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	
Annual Cost SO ₂	73	51	82	23	96	13	110	10	119	9	
Removal											
Total Levelized	87	112	179	73	321	59	463	54	558	53	
Annual Cost ^a											

^a Includes the costs associated with both SO₂ and CO₂ removal.

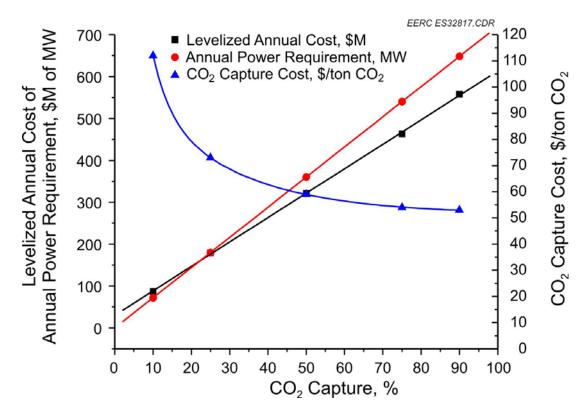
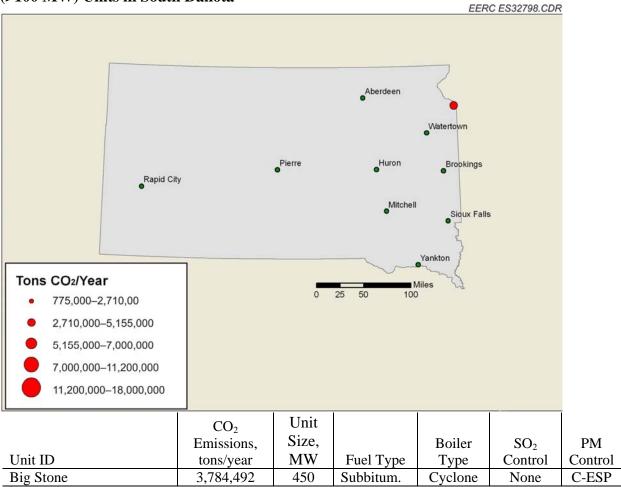


Figure A-8. Results from implementing CO_2 capture on electricity-generating units larger than 100~MW in Saskatchewan.


South Dakota

South Dakota contains three electricity-generating stations that emit approximately 4,160,000 tons of CO₂ annually. Of these three stations, one is larger than 100 MW. This generating station is known as the Big Stone Station and is located on the border of South Dakota and Minnesota. The unit has a 450-MW capacity and is equipped with a cyclone boiler with a C-ESP for PM control. The unit is not equipped with SO_x control, and therefore, WFGD was added to reduce the overall cost of CO₂ capture. The characteristics of this unit are presented in Table A-17 along with a map showing its location within the state. The CO₂ generated from the Big Stone Station is approximately 3,780,000 tons per year, roughly 91% of the CO₂ generated from all three generating stations in the state.

The results from the model simulation are summarized in Table A-18. These results indicate that there is an energy penalty of 38% associated with capturing 90% of the CO₂ emitted from this unit. The cost penalty associated with this energy requirement of 171 MW is estimated at approximately \$502 million (capital costs only), based on an average power cost of \$2936/kW. The predicted trends in the power penalty and cost of CO₂ capture as a function of the capture percentage of CO₂ are presented in Figure A-9. The power penalty increases linearly with the percentage of carbon capture, increasing from 19 MW (4.2% of the total output of the station) to 171 MW (38% of the total output of the station). At the same time, the cost of CO₂ capture decreases from \$73/ton of CO₂ captured (10% CO₂ capture rate) to between \$45 and \$43 per ton of CO₂ captured for capture rates of 50% and 90%, respectively, while the levelized annual cost, not including the cost of replacement power, increases from \$17 million (10% capture) to \$122 million (90% capture).

At the highest rate of capture, there would be approximately 3,375,000 tons of CO₂ captured, which is roughly 81% of all the CO₂ produced by the three electricity-generating stations in South Dakota. Given that the total CO₂ produced in the state from all sources is about 17,200,000 tons per year, capturing 90% of the Big Stone Station's CO₂ would yield an overall CO₂ reduction of nearly 20% for the entire state. As noted above, the cost of achieving this CO₂ capture is estimated to be approximately \$122 million annually, plus the additional cost of replacing the lost generation capacity.

Table A-17. Location and Summary of Characteristics of Electricity-Generating (>100 MW) Units in South Dakota

As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

\triangleright
- 1
S

Table A-18. Summary of	f CO ₂ Ca ₁	pture Cost	s for >10	0 MW Ele	ctricity-Ge	nerating St	ations in S	outh Dakot	a	
Carbon Capture, %		10		25	_	0		75	90)
	35,274	1,145 tons	of carbon	dioxide em	issions per	year for uni	ts of >100	MW		
CO ₂ Captured										
tons per year	3,52	27,415	8,81	8,536	17,63	7,073	26,45	55,609	31,746	5,733
Energy Assessment										
Gross Electrical	38	843	3	843	38	343	38	843	384	13
Output, MW										
Auxiliary Load, MW										
Amine Scrubber,	1	.97	4	192	98	85	14	477	177	'2
MW										
WFGD Use, MW		5	12		24		36		43	
Total Aux Load,	2	202	5	504	10	800	15	512	181	.5
MW										
% of Gross Output	5	5.3	1	3.1	26	26.2		39.3		2
		\$/ton		\$/ton		\$/ton		\$/ton		\$/ton
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2
Annual Cost SO ₂	57	16	67	8	83	5	100	4	110	3
Removal										
Total Levelized	206	74	447	58	863	54	1264	52	1519	51

Annual Cost^a

a Includes the costs associated with both SO₂ and CO₂ removal.

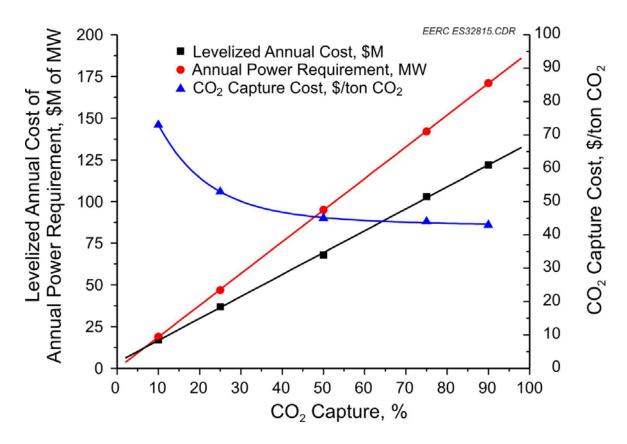
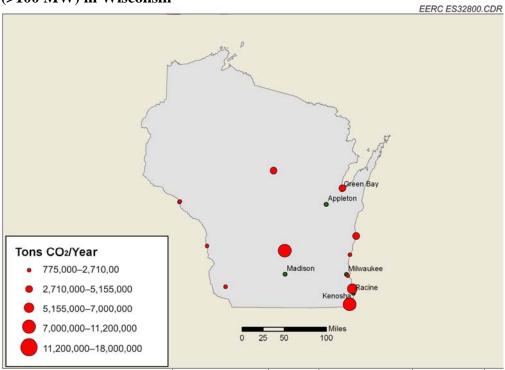


Figure A-9. Results from implementing CO_2 capture on electricity-generating units larger than 100 MW in South Dakota.


Wisconsin

Wisconsin has 35 electricity-generating stations that emit approximately 49,200,000 tons of CO₂ nnually. Of these 35 stations, 12 are larger than 100 MW. These 12 generating stations consist of 20 separate generating units, the characteristics of which are summarized in Table A-19 along with a map showing their location within the state. In cases where there is no SO_x control, WFGD was added to reduce the overall cost of CO₂ capture. The electricity-generating stations in Wisconsin use either subbituminous or bituminous coals or blends of these coals. These units vary in size from 100 MW (Alma) to 1234 MW (Pleasant Prairie Station Units 1 and 2). The total generation capacity of the units considered for CO₂ capture is 6070 MW. The CO₂ generated from these 20 units totals approximately 47,900,000 tons of CO₂ per year, roughly 97% of the CO₂ generated from all 35 generating stations in Wisconsin.

The results from the model simulations are summarized in Table A-20. These results indicate that there is an energy penalty of 33.7% associated with capturing 90% of the CO₂ emitted from these units. The cost penalty associated with this energy requirement of 2048 MW is estimated to be approximately \$6.0 billion (capital costs only), based on an average power cost of \$2936/kW. The predicted trends in the power penalty and cost of CO₂ capture as a function of the capture percentage of CO₂ are presented in Figure A-10. The power penalty increases linearly with the percentage of carbon capture, increasing from 243 MW (4.0% of the total output of the units that are >100 MW) to 2048 MW (33.7% of the total output of the units that are >100 MW). At the same time, the cost of CO₂ capture decreases from \$88/ton of CO₂ captured (10% CO₂ capture rate) to between \$49 and \$45 per ton of CO₂ captured for capture rates of 50% and 90%, respectively, while the levelized annual cost, not including the cost of replacement power, increases from \$245 million (10% capture) to \$1.6 billion (90% capture).

At the highest rate of capture, there would be approximately 43,100,000 tons of CO_2 captured, which is roughly 88% of all the CO_2 produced by the 35 electricity-generating stations in Wisconsin. Given that the total CO_2 produced in the state from all sources is 85,100,000 tons per year, a 90% CO_2 capture rate for electricity-generating stations >100 MW yields an overall CO_2 reduction of 51% for the entire state. As noted above, the cost of achieving this CO_2 capture is estimated to be approximately \$1.6 billion annually, plus the additional cost of replacing the lost generation capacity.

Table A-19. Location and Summary of Characteristics of Electricity-Generating Units (>100 MW) in Wisconsin

	CO_2	Unit				
	Emissions,	Size,		Boiler	SO_2	PM
Unit ID	tons/year ¹	MW	Fuel Type ²	Type ³	Control	Control ⁴
Pleasant Prairie No. 1	9,078,811	617	Subbitum.	W-fired	None	C-ESP
Pleasant Prairie No. 2		617	Subbitum.	W-fired	None	C-ESP
Columbia No. 1	7,912,253	512	Subbitum.	T-fired	None	H-ESP
Columbia No. 2		511	Subbitum.	T-fired	None	C-ESP
South Oak Creek No. 5	6,505,811	275	BitumSub.	W-fired	None	C-ESP
South Oak Creek No. 6		275	BitumSub.	W-fired	None	C-ESP
South Oak Creek No. 7		318	BitumSub.	T-fired	None	C-ESP
South Oak Creek No. 8		314	BitumSub.	T-fired	None	C-ESP
Edgewater No. 4	5,103,545	330	Subbitum.	Cyclone	None	C-ESP
Edgewater No. 5		380	Subbitum.	W-fired	None	C-ESP
Weston No. 3	4,795,936	350	Subbitum.	T-fired	None	H-ESP
Pulliam No. 8	2,988,738	136	Subbitum.	W-fired	None	C-ESP
J.P. Madgett	2,712,763	387	Subbitum.	W-fired	None	H-ESP
Genoa	2,292,069	346	Bitum.	T-fired	None	C-ESP
Valley No. 1	1,938,648	136	Bitum.	F-fired	None	FF
Valley No. 3		136	Bitum.	F-fired	None	FF
Nelson Dewey No. 1	1,796,376	100	BitumSub.	Cyclone	None	H-ESP
Nelson Dewey No. 2		100	BitumSub.	Cyclone	None	H-ESP
Port Washington	1,057,002	130	Bitum.	NA^5	None	NA
Alma	813,275	100	Subbitum.	NA	None	NA

¹ As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

A-4

Table A-20. Summary of CO₂ Capture Costs for >100 MW Electricity-Generating Stations in Wisconsin

	hure Cosi	2 101 /100) INT AA TEIC	culcity-Ger	iei aung St	auons m v	1500115111		
1	10	,	25	5	0	7	75	90)
47,909	,654 tons	of carbon	dioxide em	issions per	year for uni	ts of >100	MW		
4,79	0,965	11,9	77,414	23,95	4,827	35,93	32,241	43,118,689	
60	070	6	070	60	70	60)70	607	70
2	24	5	525	10	50	15	574	188	39
1	19	4	44	8	8	1	32	15	8
2	43	5	69	11	38	17	706	204	18
4	1.0	Ģ	9.4	18.7		28.1		33.7	
	\$/ton		\$/ton		\$/ton		\$/ton		\$/ton
\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2
179	37	207	17	254	11	301	8	329	8
245	88	512	60	924	49	1374	47	1632	45
	47,909 4,79 60 2 2 \$M/yr 179	10 47,909,654 tons 4,790,965 6070 224 19 243 4.0 \$\frac{1}{3}\text{ton} \text{CO}_2 \text{179} \text{37}	10 47,909,654 tons of carbon 47,909,654 tons of carbon 4,790,965 11,97 6070 60 60 60 60 60 60 60 60 60 60 60 60 60	10 25 47,909,654 tons of carbon dioxide em 4,790,965 11,977,414 6070 6070 224 525 19 44 243 569 4.0 9.4 \$\frac{\\$/\text{ton}}{\\$/\text{ton}}\$ \frac{\\$\\$/\text{ton}}{\\$\\$/\text{ton}}\$ \$\frac{\\$/\text{ton}}{\\$\\$/\text{ton}}\$ \$\frac{\\$\\$/\text{ton}}{\\$\\$\\$/\text{ton}}\$ \$\frac{\\$\\$/\text{ton}}{\\$\\$\\$/\text{ton}}\$ \$\frac{\\$\\$/\text{ton}}{\\$\\$\\$\\$\\$/\text{ton}}\$ \$\frac{\\$\\$\\$/\text{ton}}{\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\	10 25 5 47,909,654 tons of carbon dioxide emissions per 4,790,965 11,977,414 23,95 6070 6070 60 224 525 10 19 44 8 243 569 11 4.0 9.4 18 \$/ton \$/ton \$/ton \$M/yr CO ₂ \$M/yr CO ₂ \$M/yr 179 37 207 17 254	10 25 50 47,909,654 tons of carbon dioxide emissions per year for uni 4,790,965 11,977,414 23,954,827 6070 6070 6070 224 525 1050 19 44 88 243 569 1138 4.0 9.4 18.7 \$/ton \$/ton \$/ton \$M/yr CO2 \$M/yr CO2 179 37 207 17 254 11	10 25 50 7 47,909,654 tons of carbon dioxide emissions per year for units of >100 1 4,790,965 11,977,414 23,954,827 35,93 6070 6070 6070 6070 60 224 525 1050 15 19 44 88 1 243 569 1138 17 4.0 9.4 18.7 28 \$/ton \$/ton \$/ton \$/ton \$M/yr CO2 \$M/yr CO2 \$M/yr 179 37 207 17 254 11 301	47,909,654 tons of carbon dioxide emissions per year for units of >100 MW 4,790,965 11,977,414 23,954,827 35,932,241 6070 6070 6070 6070 224 525 1050 1574 19 44 88 132 243 569 1138 1706 4.0 9.4 18.7 28.1 \$/ton \$/ton \$/ton \$/ton \$M/yr CO2 \$M/yr CO2 \$M/yr CO2 179 37 207 17 254 11 301 8	10 25 50 75 90 47,909,654 tons of carbon dioxide emissions per year for units of >100 MW 4,790,965 11,977,414 23,954,827 35,932,241 43,118 6070 6070 6070 6070 6070 6070 224 525 1050 1574 188 19 44 88 132 15 243 569 1138 1706 204 4.0 9.4 18.7 28.1 33 \$/ton \$//yr CO2 \$/ton \$/ton \$/ton \$/ton \$//yr CO2 \$/ton \$/ton \$/ton

^a Includes the costs associated with both SO₂ and CO₂ removal.

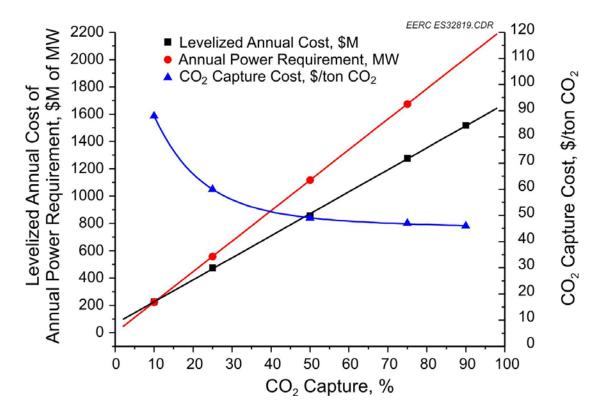
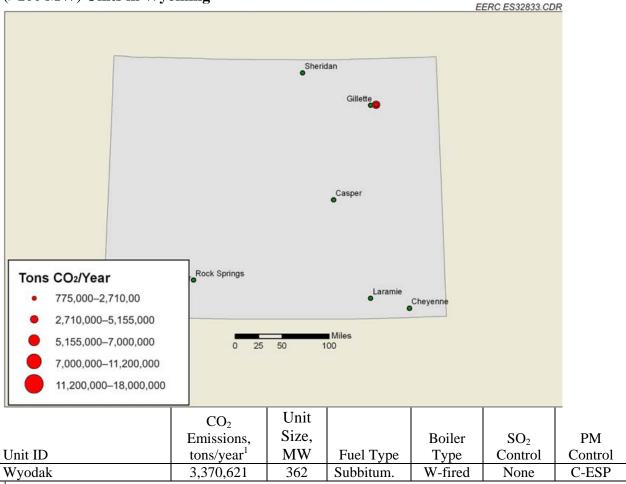


Figure A-10. Results from implementing CO_2 capture on electricity-generating units larger than 100 MW in Wisconsin.


Wyoming

The PCOR Partnership region contains only a small portion of Wyoming. This portion of the state has six electricity-generating stations that emit approximately 5,900,000 tons of CO₂ annually. Of these six stations, only one is larger than 100 MW. This generating station is known as the Wyodak Station and is located just east of Gillette, Wyoming. The 362-MW unit has a wall-fired boiler that is equipped with a C-ESP for PM control and a dry scrubber for SO_x. The characteristics of the Wyodak Station are summarized in Table A-21 along with a map showing its location within the state. The CO₂ generated from the Wyodak Station is approximately 3,371,000 tons per year, approximately 57% of the CO₂ generated from all six generating stations in the part of Wyoming that is in the PCOR Partnership region.

The results from the model simulations are summarized in Table A-22. These results indicate that there is an energy penalty of 42.8% associated with capturing 90% of the CO_2 emitted from this unit. The cost penalty associated with this energy requirement of 155 MW is estimated to be approximately \$455 million (capital costs only), based on an average power cost of \$2936/kW. The predicted trends in the power penalty and cost of CO_2 capture as a function of the capture percentage of carbon dioxide are presented in Figure A-11. The power penalty increases linearly with the percentage of carbon capture, increasing from 17 MW (4.7% of the total output of the units that are >100 MW) to 155 MW (42.8% of the total output of the unit). At the same time, the cost of CO_2 capture decreases from \$72/ton of CO_2 captured (10% CO_2 capture rate) to between \$42 and \$39 per ton of CO_2 captured for capture rates of 50% and 90%, respectively, while the levelized annual cost, not including the cost of replacement power, increases from \$16 million (10% capture) to \$110 million (90% capture).

At the highest rate of capture, there would be approximately 3,030,000 tons of CO₂ captured, which is roughly 51% of all the CO₂ produced by the six electricity-generating stations in the PCOR Partnership region of Wyoming. Given that the total CO₂ produced in the PCOR Partnership region of the state from all sources is 6,260,000 tons per year, a 90% CO₂ capture rate for electricity-generating stations >100 MW yields an overall CO₂ reduction of 48% for the entire state. As noted above, the cost of achieving this CO₂ capture is estimated to be approximately \$110 million annually, plus the additional cost of replacing the lost generation capacity.

Table A-21. Location and Summary of Characteristics of Electricity-Generating $(>100~\mathrm{MW})$ Units in Wyoming

¹ As shown in the PCOR Partnership Decision Support System (DSS, © 2007 EERC Foundation) from estimations and actual reporting data.

A-4

Table A-22. Summary of CO₂ Capture Costs for >100 MW Electricity-Generating Stations in Wyoming

Carbon Capture, %	10		25		50		75		90	
	3,371	,000 tons c	of carbon of	lioxide emi	issions per y	ear for unit	ts of >100 N	ИW		
CO ₂ Captured										
tons per year	337,100		842,750		1,685,500		2,528,250		3,033,900	
Energy Assessment										
Gross Electrical Output, MW	362		362		362		362		362	
Auxiliary Load, MW										
Amine Scrubber,	16		40		79		119		143	
MW										
WFGD Use, MW	1		3		7		10		12	
Total Aux Load, MW	17		43		86		129		155	
% of Gross Output	4.7		11.9		23.8		35.6		42.8	
		\$/ton		\$/ton		\$/ton		\$/ton		\$/ton
Cost of Capture	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2	\$M/yr	CO_2
Annual Cost SO ₂	10	29	12	14	15	9	19	7	21	7
Removal										
Total Levelized Annual Cost ^a	16	72	34	50	61	42	93	40	110	39

^a Includes the costs associated with both SO₂ and CO₂ removal.

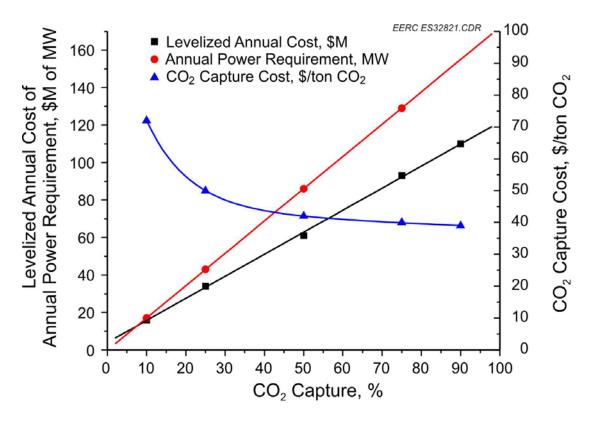


Figure A-11. Results from implementing CO_2 capture on electricity-generating units larger than 100 MW in Wyoming.

APPENDIX B

PROCEDURES USED TO ESTIMATE CAPTURE, DRYING, AND COMPRESSION COSTS AT ETHANOL PLANTS AND ELECTRICITY-GENERATING FACILITIES

PROCEDURES USED TO ESTIMATE CAPTURE, DRYING, AND COMPRESSION COSTS AT ETHANOL PLANTS AND ELECTRICITY-GENERATING FACILITIES

PROCEDURE USED TO ESTIMATE THE COST AND POWER REQUIREMENTS FOR CAPTURING, DRYING, AND COMPRESSING CO₂ PRODUCED DURING NATURAL GAS COMBUSTION

- 1. The annual combustion carbon dioxide (CO₂) emissions for the desired plant were obtained from the Plains CO₂ Reduction (PCOR) Partnership master source spreadsheet.
- 2. The Integrated Environmental Control Model (IECM) was configured.
 - The IECM session was begun by configuring the plant to be a combustion turbine producing the amount of CO₂ obtained in Step 1. To determine the CO₂ production estimated by the IECM, the "Get Results–Power Block–Flue Gas" tab was checked, and the quantity of CO₂ in the flue gas was noted. The "Get Results–Overall Plant–Plant Performance" tab provided the number of operating hours per year. Multiplying of the CO₂ quantity in the flue gas by the operating hours per year produced an annual CO₂ production rate.
 - If the IECM-estimated CO₂ quantity was too large, the number of turbines was changed in the "Set Parameters–Power Block–Gas Turbine" tab to one turbine. On the same tab, the turbine inlet temperature was adjusted until it produced the correct amount of CO₂ (or got as close as possible to the desired value).
 - Once the plant was set up without capture, capture capability was added to it on the "Configure Plant" tab. None of the other settings were changed.
 - The product pressure was set to 2500 psig on the "Set Parameters–CO₂ Capture–Amine System–Storage" tab. On the "Set Parameters–CO₂ Capture–CO₂ Transport–Config" sheet, the minimum possible total pipeline length of 0.6214 mi was entered.
- 3. The costs associated with CO₂ transport and storage were subtracted from the total variable costs on the "Get Results–CO₂ Capture–O&M (operation and maintenance) Cost" tab. This resulted in a calculation of the total variable cost for the capture plant only. Dividing this number by the total variable cost for everything determined the percentage associated with the capture plant. The fixed costs were multiplied by this percentage to get the total fixed costs for the capture plant. Adding the total variable cost for the capture plant to the total fixed costs for the capture plant produced the total annual O&M costs associated with capturing, drying, and compressing the CO₂ (but not for transporting or storing it).
- 4. The annual O&M cost on the "Get Results-CO₂ Capture-Amine System-Total Cost" tab was replaced with the one calculated in Step 3. This value was added to the annual capital cost to arrive at the total annual costs. Dividing this value by the number of tons of CO₂/yr that were

removed (which was found on the Amine System Cost Factors tab) resulted in a dollars-perton CO₂ value.

- 5. To calculate the energy used by the capture plant, all of the energy values from the "Get Results–CO₂ Capture–Cost Factors" tab were summed. The sum was divided by the tons of CO₂ removed/yr and then multiplied by the number of hours per year that the plant operated (found above the emission rate on the tab). This calculation resulted in a value for the energy required to capture, dry, and compress a ton of CO₂ per year.
- 6. Changing the amount of capture at the plant (i.e., 10%, 35%, 50%, etc.) was accomplished by changing the flue gas bypass control on the "Set Parameters–CO₂ Capture–Amine System–Config" tab to "Bypass." The box next to "Overall CO₂ Removal Efficiency" was unchecked, and the percentage of the desired capture rate was entered. The default IECM value is 90% capture of the CO₂.

PROCEDURE USED TO ESTIMATE THE COST AND POWER REQUIREMENTS FOR CAPTURING, DRYING, AND COMPRESSING CO₂ PRODUCED DURING COAL COMBUSTION

1. The annual combustion CO₂ emissions for the desired plant, as well as the fuel type, were obtained from the PCOR Partnership master source spreadsheet. Absent specific information regarding coal type, it was assumed that subbituminous coal from the Wyoming Powder River Basin was used.

2. The IECM was configured.

- The IECM session was begun by configuring the plant to be a combustion boiler. The NO_x, SO_x, and mercury control buttons were set to "none," and particulate control was set to cold-side electrostatic precipitator (C-ESP). Before configuring the plant to enable CO₂ capture, the plant was set up to produce the amount of CO₂ obtained in Step 1.
- In the "Set Parameters–Fuel–Properties" menu, the fuel was set to the correct one and the "Use This Fuel" button was clicked. A review of the "Get Results–Stack–Flue Gas" tab showed the quantity of CO₂ the IECM predicted that the plant would produce per hour. Multiplying this value by the number of hours per year that the plant operated (found in the "Get Results–Overall Plant–Plant Performance" tab) gave a yearly CO₂ emission rate.
- The box next to the gross electrical output on the "Set Parameters–Base Plant–Performance" tab was unchecked and changed to match the plant output. In the case of a coal-fired ethanol plant, the value was changed to the minimum possible so as to produce as small a stream as possible.
- Amine capture capabilities were added on the "Configure Plant" tab.

- On the "Set Parameters–CO₂ Capture–Amine System–Config" tab, the flue gas bypass control was changed to "Bypass." The box next to "Overall CO₂ Removal Efficiency" was unchecked. The bypass was set to a percentage that produced the correct amount of CO₂ for a given source.
- The product pressure was set to 2500 psig on the "Set Parameters–CO₂ Capture–Amine System–Storage" tab. On the "Set Parameters–CO₂ Capture–CO₂ Transport–Config" sheet, the minimum total pipeline length of 0.6214 mi was entered.
- 3. The costs associated with CO₂ transport and storage were subtracted from the total variable costs on the "Get Results–CO₂ Capture–O&M Cost" tab. This resulted in a calculation of the total variable cost for the capture plant only. Dividing this number by the total variable cost for everything determined the percentage associated with the capture plant only. Fixed costs were multiplied by this percentage to get the total fixed costs for the capture plant. Adding the total variable cost for the capture plant to the total fixed costs for the capture plant produced the total annual O&M costs associated with capturing, drying, and compressing the CO₂ (but not transporting or storing it).
- 4. On the "Get Results–CO₂ Capture–Amine System–Total Cost" tab, the annual O&M cost was replaced with the one calculated in Step 5. This value was added to the annual capital cost to determine the total annual cost. The total annual cost was divided by the number of tons of CO₂/yr that were removed (this is on the Amine System Cost Factors tab) to get a dollars-per-ton CO₂ value.
- 5. The energy used by the capture plant was calculated by summing all of the energy values on the "Get Results–CO₂ Capture–Amine System–Misc" tab. The sum was divided by the quantity (in tons) of CO₂ removed/yr and multiplied by the number of hours per year that the plant operated. This produced the energy required to capture, dry, and compress a ton of CO₂ per year.
- 6. Changing the amount of capture at the plant (i.e., to 10%, 35%, 50%, etc.) was accomplished by changing the flue gas bypass control on the "Set Parameters–CO₂ Capture–Amine System–Config" tab to "Bypass." The box next to "Overall CO₂ Removal Efficiency" was unchecked, and the percentage of the desired capture rate was entered. The default IECM value is 90% capture of the CO₂.

In the case of combustion at an ethanol plant, a particular emission rate is desired and the specific required bypass rate must be determined through a ratio of the desired emission rate to the total rate shown by the IECM, as follows:

$$\frac{\text{IECM Predicted Quantity}}{0.9} = \frac{\text{Desired Quantity}}{x}$$

and solving for x.

PROCEDURE USED TO ESTIMATE THE COST AND POWER REQUIREMENTS FOR DRYING AND COMPRESSION OF THE CO₂ PRODUCED DURING GAS PROCESSING OR THE ETHANOL FERMENTATION PROCESS

- 1. The annual noncombustion (i.e., fermentation) CO₂ emissions for the desired ethanol plant were obtained from the PCOR Partnership master source spreadsheet.
- 2. The IECM was configured.
 - The IECM session was begun by configuring the plant to be a combustion turbine with an amine system.
 - The product pressure was set at 2500 psig on the "Set Parameters-CO₂ Capture-Amine System-Storage" tab.
 - The "Get Results–CO₂ Capture–Amine System–Cost Factors" sheet was viewed to see how much CO₂ the IECM predicted was being captured. The IECM default bypass shows 90% capture of the plant's emissions. A ratio was used to determine the amount of bypass needed to obtain the correct size CO₂ stream. The following equation was solved for x, the overall plant capture rate:

$$\frac{\text{IECM Predicted Quantity}}{0.9} = \frac{\text{Desired Quantity}}{x}$$

- On the "Set Parameters–CO₂ Capture–Amine System–Config" tab, the flue gas bypass control was changed to "Bypass." The box next to "Overall CO₂ Removal Efficiency" was unchecked, and the overall plant capture rate that was calculated was input as a percentage.
- 3. The drying and compression unit cost on the "Get Results–CO₂ Capture–Amine System–Capital Cost" tab was divided by the total process facilities capital cost to determine the percentage of capital cost that was associated with drying and compression.
- 4. All of the energy used at the plant (shown on the "Get Results–CO₂ Capture–Amine System–Cost Factors" tab) was summed. The percentage that was associated with the CO₂ compression was determined by dividing the "CO₂ Compression Energy" value by the total.
- 5. The "Electricity" cost from the "Get Results-CO₂ Capture-Amine System-O&M Cost" tab was multiplied by the percentage from Step 4 to get a cost for electricity required to run the CO₂ drying and compression unit. The CO₂ drying and compression cost was divided by the total variable cost to get a percentage, which was multiplied by the total fixed costs to calculate the fixed costs associated with running the CO₂ drying and compression unit. The drying and compression electricity cost was added to the drying and compression fixed costs to arrive at the total annual drying and compression O&M costs.

- 6. The total levelized annual cost on the "Get Results–CO₂ Capture–Amine System–Total Cost" tab was multiplied by the percentage from Step 3 to give the annual capital costs associated with drying and compression of the CO₂ stream. This value was added to the annual O&M costs calculated in Step 5 to get the total annual costs, which was divided by the number of tons CO₂/yr to get a dollar-per-ton CO₂ value.
- 7. The unit compression energy was calculated by the IECM and was found on the "Set Parameters–CO₂ Capture–Amine System–Storage" tab.

APPENDIX C

COMPARISON OF COSTS AND ADDITIONAL ELECTRICAL REQUIREMENTS FOR CO₂ CAPTURE FROM ETHANOL PLANTS

COMPARISON OF COSTS AND ADDITIONAL ELECTRICAL REQUIREMENTS FOR CO $_2$ CAPTURE FROM ETHANOL PLANTS

The following abbreviations will be used in this appendix:

IA = Iowa

MB = Manitoba

MN = Minnesota

MO = Missouri

ND = North Dakota

NE = Nebraska

SD = South Dakota

WI = Wisconsin

AB = Alberta

SK = Saskatchewan

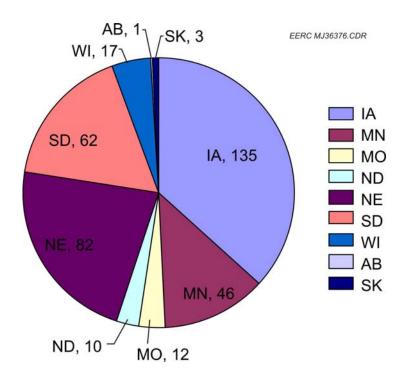


Figure C-1. Additional electrical capacity (MW) needed to capture fermentation CO₂ and 10% of combustion CO₂ at the region's ethanol plants.

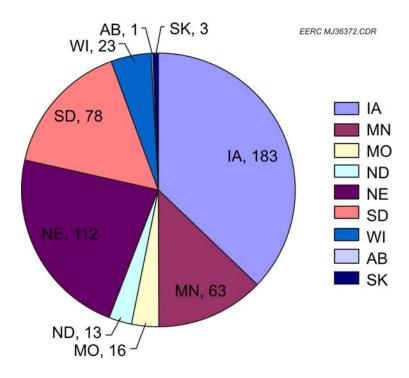


Figure C-2. Additional electrical capacity (MW) needed to capture fermentation CO₂ and 25% of combustion CO₂ at the region's ethanol plants.

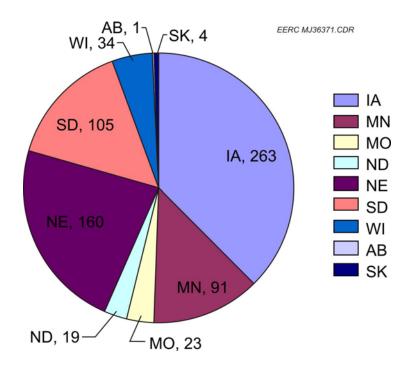


Figure C-3. Additional electrical capacity (MW) needed to capture fermentation CO₂ and 50% of combustion CO₂ at the region's ethanol plants.

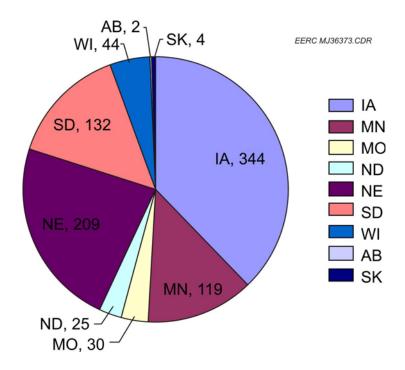


Figure C-4. Additional electrical capacity (MW) needed to capture fermentation CO₂ and 75% of combustion CO₂ at the region's ethanol plants.

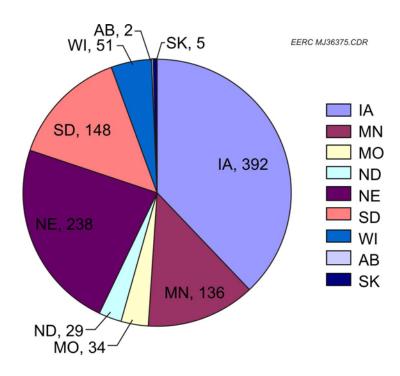


Figure C-5. Additional electrical capacity (MW) needed to capture fermentation CO₂ and 90% of combustion CO₂ at the region's ethanol plants.

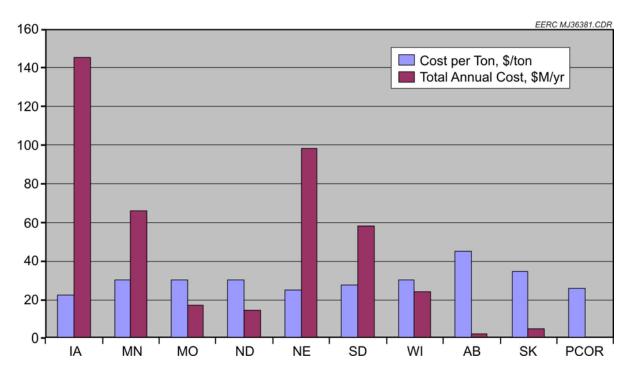


Figure C-6. The cost of capture of fermentation CO₂ and 10% of combustion CO₂ produced at the PCOR Partnership region's ethanol plants. The regional total annual cost of \$477.5 million/yr is not shown because its magnitude would compress the chart, making it difficult to see differences between the states and provinces.

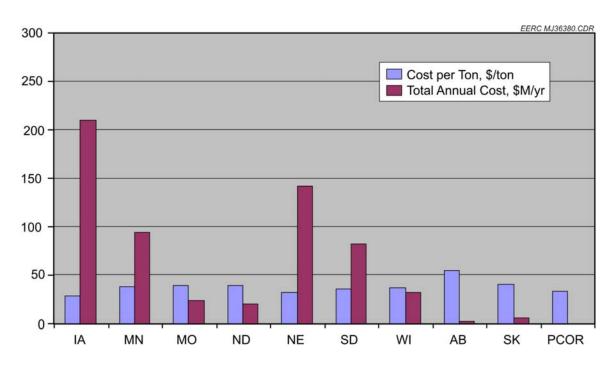


Figure C-7. The cost of capture of fermentation CO₂ and 25% of combustion CO₂ produced at the PCOR Partnership region's ethanol plants. The regional total annual cost of \$696 million/yr is not shown because its magnitude would compress the chart, making it difficult to see differences between the states and provinces.

Figure C-8. The cost of capture of fermentation CO₂ and 50% of combustion CO₂ produced at the PCOR Partnership region's ethanol plants. The regional total annual cost of \$990.6 million/yr is not shown because its magnitude would compress the chart, making it difficult to see differences between the states and provinces.

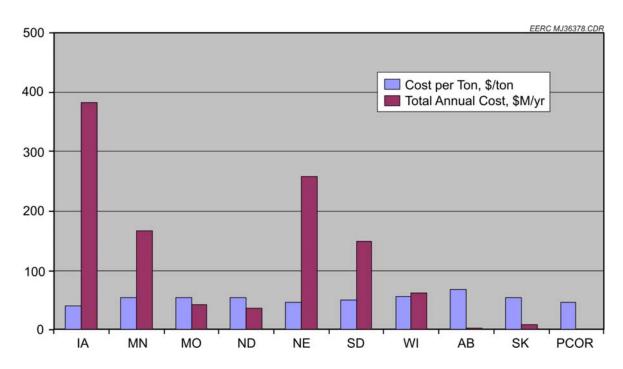


Figure C-9. The cost of capture of fermentation CO₂ and 75% of combustion CO₂ produced at the PCOR Partnership region's ethanol plants. The regional total annual cost of \$1259.5 million/yr is not shown because its magnitude would compress the chart, making it difficult to see differences between the states and provinces.

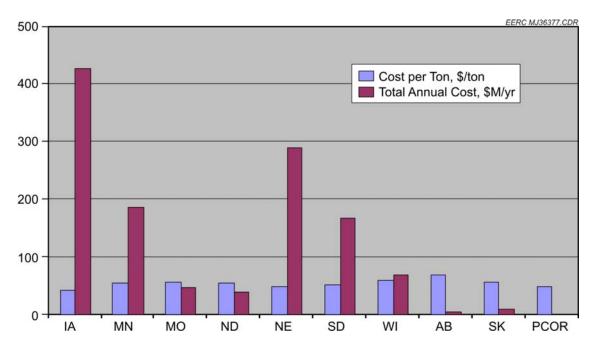


Figure C-10. The cost of capture of fermentation CO₂ and 90% of combustion CO₂ produced at the PCOR Partnership region's ethanol plants. The regional total annual cost of \$1412.7 million/yr is not shown because its magnitude would compress the chart, making it difficult to see differences between the states and provinces.

APPENDIX D

DATA USED TO GENERATE CHARTS SUMMARIZING CO₂ CAPTURE AT ELECTRICITY-GENERATING FACILITIES

Table D-1. Capture Power Requirement as a Percentage of Gross Electrical Output for the Electricity-Generating Stations Producing at Least 100 MW

	Capture Power Requirement,					
	Gross		Percenta	ge of Gross	Output	
State/Province	Output	10	25	50	75	90
Alberta	6159	3.9	9.9	19.7	29.6	35.5
Iowa	5165	3.7	9.2	18.4	27.6	33.2
Minnesota	5241	3.8	9.6	19.2	28.7	34.5
Missouri	10,836	3.7	9.3	18.6	27.9	33.5
Montana	2467	3.8	9.6	19.1	28.7	34.4
Nebraska	2819	4.0	10.0	19.9	29.9	35.9
North Dakota	3843	5.2	13.1	26.2	39.4	47.2
Saskatchewan	1684	4.3	10.7	21.4	32.1	38.5
South Dakota	450	4.2	10.5	21.1	31.6	38.0
Wisconsin	6070	4.0	9.4	18.7	28.1	33.7
Wyoming	362	4.7	11.9	23.7	35.6	42.7
Overall	45,096	4.0	9.9	19.8	29.6	35.6
Average		4.1	10.3	20.6	30.8	37.0

Table D-2. Cost of CO_2 Capture at the PCOR Partnership Regional Electricity-Generating Stations Producing at Least 100 MW

	Capture Cost, \$/ton CO ₂ Captured					
State/Province	10	25	50	75	90	
Alberta	94	62	51	48	46	
Iowa	86	61	51	49	48	
Minnesota	69	50	44	42	41	
Missouri	83	58	49	47	46	
Montana	49	40	37	36	36	
Nebraska	96	64	53	49	48	
North Dakota	74	58	54	52	51	
Saskatchewan	112	73	59	54	53	
South Dakota	73	53	45	44	43	
Wisconsin	88	60	49	47	45	
Wyoming	72	50	42	40	39	
Overall	83	58	49	47	46	
Average	81	57	48	46	45	

Table D-3. Levelized Annual Capture Cost for PCOR Partnership Regional Electricity-Generating Stations Producing at Least 100 MW

		Levelized Annual Capture Cost, \$M/yr				
State/Province	10	25	50	75	90	
Alberta	250	501	903	1338	1587	
Iowa	199	418	759	1143	1357	
Minnesota	207	435	811	1191	1414	
Missouri	403	848	1548	2314	2752	
Montana	89	190	362	536	635	
Nebraska	119	247	458	664	784	
North Dakota	206	447	863	1264	1519	
Saskatchewan	87	179	321	463	558	
South Dakota	17	37	68	103	122	
Wisconsin	245	512	924	1374	1632	
Wyoming	16	34	61	93	110	
Overall	1838	3847	7079	10,483	12,468	

Table D-4. Quantity of CO₂ Captured at the PCOR Partnership Region's Electricity-Generating Stations Producing at Least 100 MW

		CO_2					
		Production					
		from All					
	Total CO ₂	Electric					
	Production,	Stations,	Γ	Cotal CO ₂	Captured	l, Mtons/y	<u>r</u>
State/Province	Mtons/yr	Mtons/yr	10	25	50	75	90
Alberta	105	47.4	4.57	11.42	22.84	34.25	41.11
Iowa	55.5	39.2	3.65	9.13	18.26	27.39	32.87
Minnesota	72.3	53.3	4.18	10.46	20.92	31.38	37.66
Missouri	99.0	83.3	7.90	19.76	39.51	59.27	71.12
Montana	23.2	21.0	2.01	5.03	10.05	15.08	18.09
Nebraska	33.7	25.8	2.22	5.55	11.11	16.66	19.99
North Dakota	44.3	36.0	3.55	8.82	17.64	26.46	31.75
Saskatchewan	21.2	14.5	1.42	3.56	7.12	10.67	12.81
South Dakota	19.9	4.19	0.38	0.94	1.88	2.81	3.38
Wisconsin	90.0	50.6	4.79	11.98	23.95	35.93	43.12
Wyoming	6.29	5.91	0.34	0.84	1.69	2.53	3.03
Overall	576	382	35.01	87.48	174.96	262.44	314.92

Table D-5. Percentage of Reduction in CO₂ Emissions from Electricity-Generating Stations in the PCOR Partnership Region Afforded by CO₂ Capture

	CO ₂ Production					
	from All Electric	CO D	advationa	from All D	lastria Stat	tions 0/
	Stations, -	CO ₂ K	eductions	Irom An E	lectric Stat	110ns, %
State/Province	Mtons/yr	10	25	50	75	90
Alberta	47.4	9.64	24.1	48.2	72.3	86.7
Iowa	39.2	9.33	23.3	46.6	70.0	83.9
Minnesota	53.3	7.86	19.6	39.3	58.9	70.7
Missouri	83.3	9.49	23.7	47.4	71.1	85.4
Montana	21.0	9.58	24.0	47.9	71.9	86.2
Nebraska	25.8	8.61	21.5	43.1	64.6	77.5
North Dakota	36.0	9.86	24.5	49.0	73.5	88.2
Saskatchewan	14.5	9.80	24.5	49.0	73.5	88.2
South Dakota	4.19	8.95	22.4	44.8	67.2	80.6
Wisconsin	50.6	9.46	23.7	47.3	71.0	85.2
Wyoming	5.91	5.70	14.2	28.5	42.7	51.3
Overall	382	9.17	22.9	45.8	68.8	82.5

Table D-6. Percentage of Reduction in CO₂ Emissions from All Industrial Point Sources in the PCOR Partnership Region Afforded by CO₂ Capture

	Total CO ₂					
	Production,	CC	O ₂ Reduction	ns from Al	Sources, 9	%
State/Province	Mtons/yr	10	25	50	75	90
Alberta	105	4.35	10.9	21.7	32.6	39.1
Iowa	55.5	6.58	16.5	32.9	49.4	59.2
Minnesota	72.3	5.79	14.5	29.0	43.4	52.1
Missouri	99.0	7.98	20.0	39.9	59.9	71.8
Montana	23.2	8.67	21.7	43.4	65.0	78.0
Nebraska	33.7	6.59	16.5	33.0	49.4	59.3
North Dakota	44.3	8.01	19.9	39.8	59.7	71.6
Saskatchewan	21.2	6.71	16.8	33.6	50.3	60.4
South Dakota	19.9	1.89	4.7	9.4	14.1	17.0
Wisconsin	90.0	5.32	13.3	26.6	39.9	47.9
Wyoming	6.29	5.35	13.4	26.8	40.2	48.2
Overall	576	6.08	15.2	30.4	45.6	54.7

APPENDIX E

SUMMARY OF CO₂ PIPELINE ROUTES FOR THE PCOR PARTNERSHIP STATES AND PROVINCES

SUMMARY OF CO_2 PIPELINE ROUTES FOR THE PCOR PARTNERSHIP STATES AND PROVINCES

ALBERTA

Table E-1. Summary of CO₂ Pipelines in Alberta¹

		Construction Cost,	O&M ² Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
178	36	448.2	0.89
44	30	91.7	0.22
88	20	123.8	0.44
209	16	234.1	1.04
312	12	262.1	1.56
211	8	118.2	1.06
251	6	105.3	1.25
1293	_	1383.3	6.46

Totals are in bolded text.
 Operation and maintenance.

Figure E-1. Map showing pipeline routes in Alberta.

BRITISH COLUMBIA

Table E-2. Summary of CO₂ Pipelines in British Columbia¹

		Construction Cost,	
Length, mi	Diameter, in.	\$millions	O&M Cost, \$millions/yr_
50	12	42.0	0.25
70	8	39.2	0.35
149	6	62.5	0.74
269	_	143.7	1.34

¹ Totals are in bolded text.

Figure E-2. Map showing pipeline routes in British Columbia.

IOWA

Table E-2. Summary of CO₂ Pipelines in Iowa¹

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
220	24	369.6	1.1
291	20	406.7	1.5
201	16	225.1	1.0
191	12	160.4	1.0
53	8	29.7	0.3
59	6	24.8	0.3
297	4	83.2	1.5
1312	_	1299.5	6.6

¹ Totals are in bolded text.

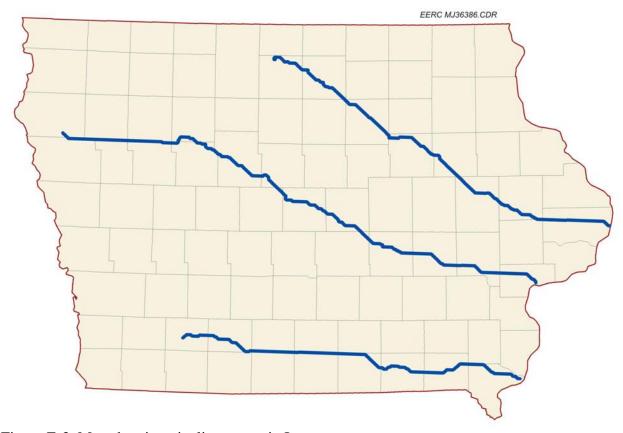


Figure E-3. Map showing pipeline routes in Iowa.

MANITOBA

There are no ethanol plants, gas-processing plants, or electricity-generating stations at least 100 MW in size in Manitoba.

MINNESOTA

Table E-4. Summary of CO₂ Pipelines in Minnesota¹

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
299	30	530.2	1.49
107	24	179.4	0.53
155	20	217.5	0.78
17	16	19.0	0.09
233	12	195.7	1.17
161	8	90.1	0.81
208	6	87.4	1.04
183	4	51.2	0.92
1363	_	1370.5	7.02

¹ Totals are in bolded text.

Figure E-4. Map showing pipeline routes in Minnesota.

MISSOURI

Table E-5. Summary of CO_2 Pipelines in Missouri¹

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
374	30	785.4	1.87
204	24	342.7	1.02
76	20	106.4	0.38
111	16	124.3	0.56
139	12	116.8	0.70
82	4	23.0	0.40
986	_	1498.6	4.93

¹ Totals are in bolded text.

Figure E-5. Map showing pipeline routes in Missouri.

MONTANA

Table E-6. Summary of CO₂ Pipelines in Montana

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
290	24	486.1	1.45
77	12	46.4	0.39
367	_	532.5	1.84

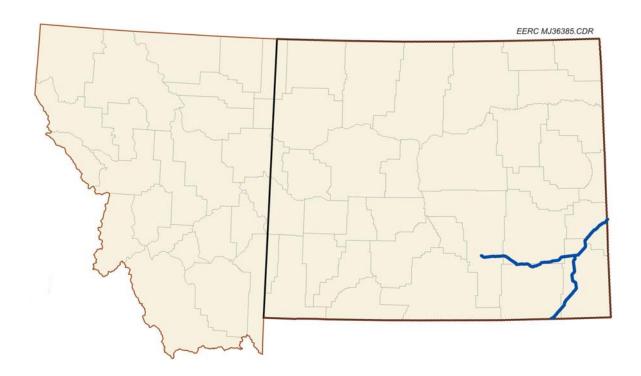


Figure E-6. Map showing pipeline routes in Montana.

NEBRASKA

Table E-7. Summary of CO₂ Pipelines in Nebraska¹

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
79	30	165.9	0.39
623	24	1046.6	3.10
7	20	9.8	0.04
60	16	67.2	0.30
287	12	241.1	1.44
2	8	10.6	0.01
171	6	71.8	0.86
96	4	26.7	0.48
1325	_	1639.7	6.62

¹ Totals are in bolded text.

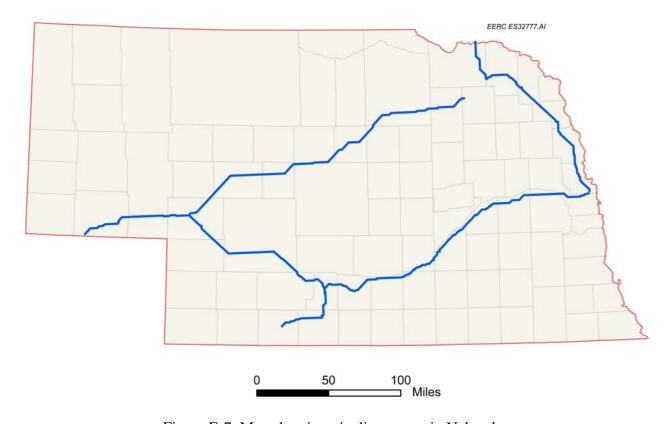


Figure E-7. Map showing pipeline routes in Nebraska.

NORTH DAKOTA

Table E-8. Summary of CO₂ Pipelines in North Dakota¹

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
604	30	1266	3.02
289	20	404.8	1.45
10	16	11.2	0.05
15	12	12.6	0.08
40	6	16.8	0.20
958	_	1711.4	4.79

¹ Totals are in bolded text.

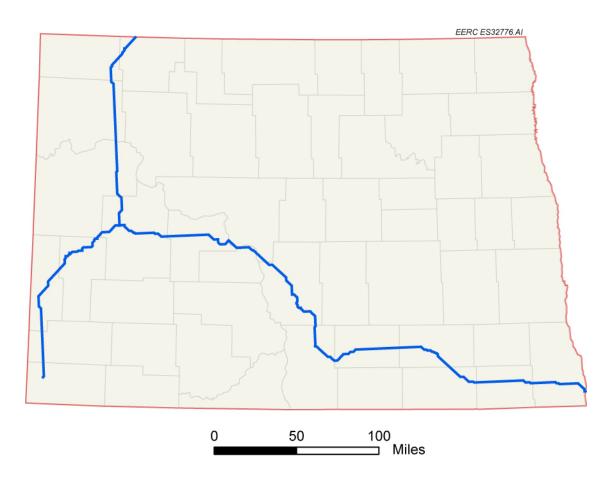


Figure E-8. Map showing pipeline routes in North Dakota.

SASKATCHEWAN

Table E-9. Summary of CO₂ Pipelines in Saskatchewan¹

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
20	20	28.0	0.10
90	16	100.8	0.45
110	_	128.8	0.55

¹ Totals are in bolded text.

Figure E-9. Map showing pipeline routes in Saskatchewan.

SOUTH DAKOTA

Table E-10. Summary of CO₂ Pipelines in South Dakota¹

	-	Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
362	20	506.8	1.81
202	16	225.8	1.01
21	12	17.6	0.11
297	6	124.6	1.48
33	4	9.2	0.17
915	_	884.0	4.58

¹ Totals are in bolded text.

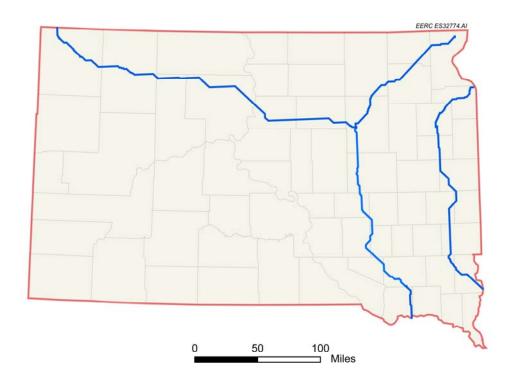


Figure E-10. Map showing pipeline routes in South Dakota.

WISCONSIN

Table E-11. Summary of CO₂ Pipelines in Wisconsin¹

		Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
165	30	347.3	0.83
478	20	669.7	2.39
36	16	40.3	0.18
64	12	53.8	0.32
11	8	6.2	0.05
117	6	49.1	0.59
871	_	1166.4	4.36

¹ Totals are in bolded text.

Figure E-11. Map showing pipeline routes in Wisconsin.

WYOMING

Table E-12. Summary of CO₂ Pipelines in Wyoming

	<u> </u>	Construction Cost,	O&M Cost,
Length, mi	Diameter, in.	\$millions	\$millions/yr
77	12	46.4	0.385

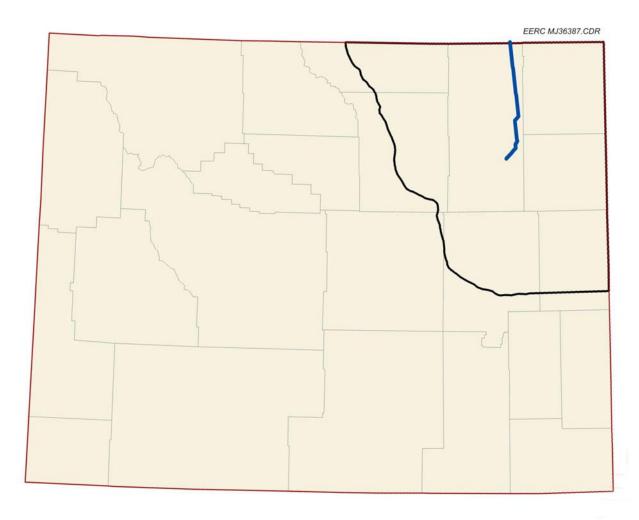


Figure E-12. Map showing pipeline routes in Wyoming.