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EERC DISCLAIMER 
 
 LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory 
(NETL). Because of the research nature of the work performed, neither the EERC nor any of its 
employees makes any warranty, express or implied, or assumes any legal liability or responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed or represents that its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement or recommendation by the 
EERC. 
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ANALYSIS OF EXPANDED SEISMIC CAMPAIGN 
 
 
EXECUTIVE SUMMARY 
 
 The Plains CO2 Reduction Partnership (PCOR) Partnership, led by the Energy & 
Environmental Research Center (EERC), is working with Denbury Resources Inc. (Denbury) to 
study incidental carbon dioxide (CO2) storage associated with a commercial enhanced oil recovery 
(EOR) project at the Bell Creek oil field located in southeastern Montana, which is operated by 
Denbury Onshore LLC. As the field operator, Denbury carries out the injection and production 
operations. The EERC has provided support for site characterization, modeling and simulation, 
and risk assessment and will aid in the development of the monitoring, verification, and accounting 
(MVA) plan. As part of this effort, a three-dimensional (3-D) surface seismic survey was acquired 
in 2012 prior to the start of CO2 injection. This baseline survey provided detailed information that 
enhanced the characterization of the reservoir and served as a benchmark comparison for two 
subsequent surface monitor surveys acquired in 2014 and 2015. The monitor surveys, acquired 
after CO2 injection had been implemented in different field development phases, were used to 
create “difference images” to track where the injected CO2 had migrated to within the reservoir at 
the time of the survey. Maps of the seismic amplitude changes associated with injected CO2 
produce powerful images that allow for detailed interpretation of the injection zone, providing 
significant additional information on permeability barriers and flow channels that were used to 
refine the characterization, update the geologic models to improve predictive simulations, and help 
determine the ultimate fate of injected CO2 (Figure ES-1).  
 
 In addition to the 3-D surface seismic surveys, several other geophysical studies have been 
done or are currently being conducted at Bell Creek as part of the expanded seismic campaign. 
These include a 2-D test line to assess different sources for use in the baseline 3-D survey that later 
became instrumental in proving that CO2 could be observed in the reservoir. 3-D vertical seismic 
profiles (VSPs) were acquired, processed, and are being interpreted from two observation wells. 
One observation well, 04-03 OW, contains a 50-level seismic geophone array that was 
permanently installed. The permanent array was connected to a recording system on the surface, 
and data were recorded passively and continuously for 3 years in order to detect microseismic 
events that occurred during the time period when field development Phases 1 and 2 were prepared 
and brought online with CO2 flooding. In-house processing and interpretation of the passive data 
are ongoing. The VSP and passive seismic analyses are not presented in this report. 
 
 Key Results and Conclusions from the Bell Creek Expanded Seismic Campaign  
 
• The expanded seismic campaign has been instrumental in gaining a better understanding of 

incidental CO2 storage associated with CO2 EOR. It has provided a means to measure and image 
physical properties throughout the geologic section on a fine grid over the field that has aided 
geologic characterization. 
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Figure ES-1. Summary of the 2014–2012 4-D amplitude difference map interpretation. 
 
 

• 4-D analysis improved the understanding of the reservoir heterogeneity and improved the 
geologic model that was generated using interpretation results from the 2012 baseline data. 

• CO2 acted as a tracer that illuminated geobodies in the 4-D data by delineating permeability 
barrier boundaries that were not resolved with 3-D baseline data. This illumination gave better 
insight about the location, extent, and effectiveness of these permeability barriers.  

• Understanding and incorporating the newly illuminated features and their geometrical 
dimensions into the static model significantly improved dynamic simulation of well 
performance and improved reservoir history matching and forecasting.  

• 4-D analysis indicated updip migration of CO2 in the south–east direction and apparent 
accumulation of CO2 against the permeability barrier.  

• Inversion of 3-D data was used to calculate volumes of geomechanical properties that were 
used in the construction of a 3-D mechanical earth model so that geomechanical responses due 
to injection operations could be modeled in the reservoir and surrounding strata.  

 
 The results of the expanded seismic campaign have contributed to the PCOR Partnership’s 
development of practices and technologies that will allow future commercial-scale CO2 storage 
projects to make informed decisions regarding site selection, injection operations, and monitoring 
strategies. Work on the expanded seismic campaign data will continue with in-house processing 
and interpretation of the passive data to better understand changes in reservoir conditions 
associated with phase development. New methods of pre- and poststack inversion of 3-D surface 
data are planned to gain more information about reservoir compartmentalization. Additional 
efforts may include quantitative 4-D seismic analysis and inversion to independently estimate the 
amount of CO2 stored in the reservoir and separate the CO2 seismic response from the pressure 
response. 
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ANALYSIS OF EXPANDED SEISMIC CAMPAIGN 
 
 
INTRODUCTION 
 
 The Plains CO2 Reduction Partnership (PCOR) Partnership, led by the Energy & 
Environmental Research Center (EERC), is working with Denbury Resources Inc. (Denbury) to 
study incidental carbon dioxide (CO2) storage associated with a commercial enhanced oil recovery 
(EOR) project at the Bell Creek oil field located in southeastern Montana, which is operated by 
Denbury Onshore LLC (Figure 1). As the field operator, Denbury carries out the injection and 
production operations as part of a commercial EOR project. In order to facilitate an improved 
understanding of incidental CO2 storage associated with a commercial EOR project and to inform 
viable characterization, modeling, and monitoring strategies at future CO2 storage projects, the 
EERC partnered with Denbury to conduct several types of geophysical studies. This document 
provides an overview of these different surveys; their acquisition, processing, and interpretation; 
and their integration with the EERC’s characterization program and geologic model. 
 
 A significant contribution to this effort has been the acquisition and interpretation of multiple 
overlapping three-dimensional (3-D) surface seismic surveys acquired over the field. The 2012 
baseline survey, acquired prior to the start of CO2 injection, provided detailed information that 
enhanced the characterization of the reservoir and served as a benchmark comparison to 
subsequent surface surveys. When the baseline survey was paired together with overlapping 3-D 
surface seismic surveys acquired after CO2 injection had progressed, the changes occurring 
between the two surveys constituted a direct indication of where the injected CO2 had migrated 
within the reservoir at the time of the survey. This provided additional information on permeability 
barriers and flow channels that were then used to refine the characterization and update the 
geologic models to improve predictive simulations and help determine the ultimate fate of injected 
CO2. At Bell Creek, two 3-D surface seismic surveys were acquired subsequent to the baseline and 
commencement of injection: the 2014 monitor and the 2015 monitor and baseline extension. 
 
 While direct interpretation of the 3-D time-lapse images is powerful, the physical 
measurements that make up the data sets from the 3-D surveys are a rich source of information 
that can be mined in other ways. The acquisition geometry provides a wide sampling of shot point 
and receiver point offsets which, together with subsurface velocity information, allows for the data 
to be sorted into the various incident angles of the energy raypaths that reflect from any given point 
in the subsurface. These amplitude-versus-offset relationships can be computationally inverted to 
geomechanical properties, and this was done to assist in the creation of a 3-D mechanical earth 
model. The method and purpose for this are described in Appendix C. 
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Figure 1. The Bell Creek oil field in southeastern Montana lies on the eastern edge of the Powder River Basin. The CO2 used for EOR is 
transported to the field through pipeline from ExxonMobil’s Shute Creek gas-processing plant and ConocoPhillips’ Lost Cabin natural 

gas-processing plant (Burnison and others, 2016). 
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 In addition to the 3-D surface seismic surveys, several other geophysical studies have been 
done at Bell Creek. Figure 2 shows a time line of the geophysical studies that were a part of the 
PCOR Partnership project’s expanded seismic program at Bell Creek. The first study was a 2-D 
test line to assess different sources for use on the baseline 3-D. It later became instrumental in 
proving that CO2 could be observed in the reservoir using time-lapse seismic. Fluid replacement 
modeling done by Denbury in 2014 indicated that seismic amplitudes for the target interval would 
be reduced by 17% if CO2 concentrations were high and dominant frequencies were above 30 Hz. 
While detectable, this level of change could be ambiguous on real data. To eliminate uncertainty, 
the 2-D line was reshot approximately 14 months after CO2 injection had begun in the vicinity of 
the line. Processed using a time-lapse workflow, the result showed that CO2 was clearly visible in 
the reservoir on the difference display. 
 
 

 
 

Figure 2. Time line showing the different components of the expanded seismic campaign. 
 
 
 3-D vertical seismic profiles (VSPs) also figured prominently in the expanded campaign. 
Pre-CO2 injection baseline 3-D VSPs were acquired in two observation wells (OWs): 05-06 OW 
and 04-03 OW. The 05-06 OW well employed a removable array, but 04-03 OW is a special case 
where a 50-level seismic geophone array was permanently installed. After the baseline 3-D VSPs 
were acquired, the permanent array was connected to a recording system on the surface, and data 
were recorded passively and continuously for 3 years in order to detect microseismic events that 
occurred during the time period when field development Phases 1 and 2 were prepared and brought 
online with CO2 flooding. Later, while continuously recording, a complete monitor 3-D VSP 
survey was acquired using the 04-03 OW array concurrently with the first surface seismic monitor 
survey in October 2014. These geophysical studies are under way, and additional information can 
be found in Appendixes A and B.  
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BACKGROUND 
 
 The geologic target of interest for CO2 injection is the oil-bearing Bell Creek Sand reservoir, 
within the Lower Cretaceous Muddy Formation (also referred to as the Newcastle), at a typical 
depth of approximately 4500 feet (Figure 3). Burnison and others (2014) reported on the 
geophysical reservoir characterization efforts at Bell Creek, with analysis and preliminary 
interpretation of the 3-D baseline survey. The 2012 baseline was the first 3-D data acquired over 
the field, and the interpretation was able to identify lithofacies and reservoir heterogeneities in 
greater detail than previously possible. The field had been drilled and developed using 40-acre 
well spacing which provided 16 data locations per square mile. Normally, this is considered 
substantial spatial geologic control, but the trace spacing on the 3-D data at Bell Creek is 82.5 feet, 
or 4096 data points per square mile, which provides the ability to map geologic horizons and facies 
changes between wells with much more detail. Subsequent interpretation work using the same data 
led directly to a new and different understanding of the depositional history of the Bell Creek Field 
(Bosshart and others, 2015; Jin and others, 2016). Insights from the interpretations were 
incorporated in updated geologic models and used to create more accurate predictive reservoir 
simulations. 
 
 The Muddy Formation is relatively thin, about 60 feet, and there was concern that this could 
present seismic interpretation challenges due to the depth of the formation (about 4500 ft). Vertical 
resolution degrades with depth because higher frequencies from the source attenuate more rapidly 
than do lower frequencies, and both high and low frequencies are needed for resolution. That the 
Bell Creek sand reservoir within the Muddy is rarely thicker than 30 feet presents even greater 
challenges. Burnison and others (2014) described in detail the origin of the reservoir reflection, 
which is due to a large increase in acoustic impedance (AI) at the top of the Springen Ranch 
Formation and a similar decrease in AI at the top of the Skull Creek (Figure 4). The measured 
thickness of the Springen Ranch-to-Skull Creek interval in the field varies from about 50 to  
75 feet. Spectral bandwidth in the zone of interest on the baseline data was no greater than about 
10–50 Hz. Given the average Muddy interval velocity of 10,800 ft/s, this mathematically limits 
the vertical resolution of the seismic data at reservoir depth to just under 60 feet, roughly equivalent 
to the thickness of the formation. Therefore, the Muddy Formation acts as a thin-bed reflector, 
with the appearance of an entering trough followed immediately by an exiting peak. The presence 
of CO2 in the Bell Creek sand significantly impacts the amplitude of the entire Muddy reflection, 
and interpreting the changes in amplitude seen on the monitor surveys and difference displays 
reveals significant geologic character within the reservoir. 
 
 As much of the interpretation effort focuses on the reservoir reflection, images with more 
context that include annotated well logs and the bounding Springen Ranch and Skull Creek 
horizons overlaid are useful (Figure 5). Similar images will demonstrate interpretation where CO2 
injection has occurred. Powerful interpretations also result by mapping the amplitude changes over 
the survey area. 
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Figure 3. Stratigraphic column for the Bell Creek area. The Muddy Formation at a depth of 
4500 feet is the oil-bearing reservoir (modified from Bosshart and others, 2015).  
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Figure 4. The P-wave acoustic impedance curve (sonic velocity × density) demonstrates that 
significant impedance changes occur at the Springen Ranch and Skull Creek boundaries and give 

rise to the Muddy Formation reflection. Bell Creek sand boundaries also exhibit impedance contrasts 
within this interval but are below the resolution of the wavelet (Burnison and others, 2014).  

 
 

 
 
Figure 5. Baseline seismic data with interpreted horizons. GR (gamma ray) and P-wave velocity 

logs from observation well 05-06 OW are overlaid. The Springen Ranch and Skull Creek 
represent the top and base of the Muddy Formation. 
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 Jin and others (2016) have described the reservoir depletion and production history of the 
Bell Creek oil field. In brief, production in the early life of the Bell Creek oil field was driven by 
primary depletion followed by secondary waterflooding. The mature field, which has been 
producing since 1967, has experienced pressure depletion and a significant decline in the oil 
production rate prior to August 2012 when the pre-CO2 injection baseline 3-D seismic survey was 
acquired (Figure 6). 
 
 

 
 
Figure 6. Measured and simulated average reservoir pressure and oil production rate history for 

development Phases 1 and 2 of the Bell Creek Oil Field. Increases in pressure and oil production 
in May 2013 are due to CO2 enhanced oil recovery (Salako and others, 2017). 

 
 
 CO2 tertiary recovery started in the Phase I development area in May 2013. The CO2 is 
sourced from the ExxonMobil Shute Creek gas-processing plant and the ConocoPhillips Lost 
Cabin natural gas-processing plant, where CO2 is separated from the process stream during 
refinement of natural gas. As of August 2016, over 2.9 million barrels of incremental oil has been 
recovered (Montana Board of Oil and Gas Conservation, 2017). Using these production and 
accompanying injection data, the EERC calculated that over 3.2 million tonnes of incidental CO2 
storage associated with the CO2 EOR process has occurred. 
 
 At Bell Creek, CO2 EOR is being implemented in a staged approach with nine planned CO2 
development phases across the field. This is due, in part, to some phases being at least partially 
geologically isolated by permeability barriers at the reservoir level, allowing them to be 
pressurized and prepared for CO2 injection independently of other phases. Hence, mapping the 
permeability barrier locations is an important part of the characterization of the field. Another 
reason for phased development is that the infrastructure requirement to implement CO2 EOR 
involves substantial capital outlays, and phased development allows for a return on the capital  
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investment in a staged manner. These factors explain the timing and areal coverage of the 3-D 
monitor surveys. The 2014 monitor survey was focused on Phase 1 and part of Phase 2, which had 
been undergoing CO2 injection for 17 months and 11 months, respectively (Figure 7). The 2015 
monitor and baseline extension survey imaged CO2 injection in Phase 3 and the rest of Phase 2 
and provided additional baseline coverage for Phases 4, 5, and 6. 
 
 The PCOR Partnership applies a philosophy of integrating site characterization, modeling 
and simulation, risk assessment, and MVA strategies into an iterative, adaptive management 
approach (Figure 8) (Ayash and others, 2016). Elements of any of these activities play a role in 
the understanding and development of the others. The expanded seismic campaign has played a 
meaningful role in each of the four elements by providing, among other benefits, 1) measurements 
and images of physical properties throughout the geologic section on a fine grid over the field that 
has aided geologic characterization, 2) a means of constraining the statistical modeling along 
geobody boundaries to improve model predictions, 3) a way of identifying potential migration 
pathways within the reservoir and seal that feeds directly into the risk assessment, and 4) a means 
of directly indicating the locations of CO2 accumulation via the time-lapse surveys as part of the 
MVA plan. 
 
 

 
 

Figure 7. Bell Creek Field with outlines of the three 3-D surface seismic surveys overlaying the 
nine planned CO2 EOR development phases in the Bell Creek Field. At the time of the surveys, 

CO2 was imaged in Phases 1, 2, and 3 (modified from Jin and others, 2016). 
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Figure 8. Adaptive management approach for understanding CO2 storage systems  
(Ayash and others, 2016). 

 
 
SEISMIC DATA ACQUISITION AND PROCESSING 
 

3-D Surface Seismic Data Acquisition 
 
 Three 3-D seismic surveys have been acquired at the Bell Creek Field to characterize the 
reservoir and monitor the time-lapse changes within it due to CO2 injection during EOR. The 
2012 baseline survey was collected prior to CO2 injection. The first monitor survey, the 2014 
monitor survey, was collected in 2014 after CO2 injection had been initiated in development Phases 
1 and 2. The second monitor survey, the 2015 monitor and baseline extension, was collected in 
2015 after CO2 injection had been initialized in development Phases 1, 2, and 3. 
 

2012 Baseline Survey 
 
 The 2012 baseline survey was acquired in August and September 2012. As the first 3-D 
seismic survey acquired over the field, its purpose was to enhance reservoir characterization and 
serve as a baseline data set for future time-lapse analyses. The survey covered an area of 40 square 
miles (Figure 7). Burnison and others (2014) provide details of the acquisition and processing 
parameters, with an analysis and initial interpretation of the data that were integrated with the field 
characterization effort.  
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2014 Monitor Survey 
 
 Approximately 17 months after CO2 injection was initiated in the field, the 2014 monitor 
survey was acquired to image the time-lapse changes in the reservoir due to CO2 injection. The 
2014 monitor was an 11.6-square-mile survey acquired over 13 days from October 20, 2014, 
through November 1, 2014. Survey boundaries include all of Phase 1 and part of Phases 2, 3, 4, 5, 
and 8 (Figure 9). The survey was designed to overlap the 2012 baseline survey and produce an 
image of the reservoir in Phase 1 and a portion of Phase 2 that had undergone CO2 injection since 
the original baseline survey had been collected. 
 
 

 
 

Figure 9. Source and receiver locations for the 2014 monitor survey acquired October 2014. 
Source locations outside the grid on the east and northeast were part of the concurrently acquired 

3-D VSP using the permanent array in 04-03 OW. 
 
  



 

11 

 The parameters and field layout for the monitor survey were intentionally similar to the 2012 
baseline survey with two major differences. The 2012 baseline used a six-geophone array at each 
receiver location, whereas the 2014 monitor employed a single three-component receiver at each 
receiver point. Receiver line spacing was also tighter to increase the recorded fold, with an active 
spread of 26 lines of 126 stations (16 lines for the baseline). Field acquisition parameters for the 
2014 monitor survey are listed in Table 1. 
 
 

Table 1. Acquisition Parameters for the 2014 Monitor Survey and the 2015 Monitor and 
Baseline Extension Survey 

 2014 Monitor  
2015 Monitor and Baseline 

Extension 
Geophysical Contractor Dawson Geokinetics 
Energy Source Two 64,000-lb AHV-IV 

Vibroseis (Figure 10) 
Two 64,000-lb AHV-IV 

Vibroseis 
Source Interval 165 feet 165 feet 
Total Source Points 3388 7512 
Sensor GS 1-3C 10-Hz geophone 

(Figure 11) 
DTCC DT- Solo 3C 10-Hz 

geophone 
Group Interval 165 feet 165 feet 
Geophone Pattern One geophone One geophone 
Active Spread 26 lines, 126 stations each 26 lines, 126 stations each 
Active Stations 3276 3276 
Total Source Stations 3388 7512 
Total Receiver Stations 3031 6622 
Sweep Parameters Proprietary Proprietary 
Record Length 4 seconds 4 seconds 
Sample Interval 2 millisecond 2 millisecond 
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Figure 10. Two Vibroseis trucks moving between shot points during the 2014 monitor survey. 
 
 
 
 

 
 

Figure 11. 2014 monitor survey receiver station with a single GS-1, 3-component 10-Hz 
geophone (center), Geospace GSX seismic recorder (bottom), and battery. 
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 The 2014 monitor survey data was processed by Sensor Geophysical Ltd. For time-lapse  
4-D analysis, the best practice standard is for both baseline and monitor data to be processed in the 
same way, so Sensor Geophysical also reprocessed the 2012 baseline survey using the same 
workflow and velocities to facilitate the time-lapse differencing. The processing workflow is 
summarized below, with details provided in Appendix C: 
 

• Geometry assignment and trace edits 
• Spherical divergence correction with a +4-dB/sec gain 
• Surface-consistent scaling 
• Singular value decomposition for groundroll removal 
• Surface-consistent deconvolution and Vibroseis deconvolution compensation 
• Refraction statics and surface-consistent statics 
• Velocity analysis, surface-consistent statics, and time alignment statics 
• Applying normal moveout correction (NMO) 
- Surface consistent scaling 
- Time and frequency (T-F) adaptive noise suppression 
- Fold-matching the baseline and monitor surveys 
- F-XY filtering 
- Anisotropic diffusion filter 

• Removing NMO 
• Kirchhoff prestack time migration (PSTM) 
• Shift data to final datum 

 
2015 Monitor and Baseline Extension Survey 

 
 The 2015 monitor and baseline extension survey was acquired over a 17-day period from 
August 20, 2015, through September 6, 2015, and has an area of 26 square miles. The survey added 
area on the north end of the field that had not been covered by the 2012 baseline (Figure 7). Parts 
of Phases 1, 2, and 3 were repeated for time-lapse analysis (Figure 12). 
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Figure 12. Source and receiver location map for the 26-square-mile 2015 monitor and baseline 
extension survey acquired September 2015. 

 
 
 Parameters matched the previous survey, with the only difference being the use of Sercel 
nodal recording instrumentation and a different three-component geophone (Table 1 and 
Figure 13). Of this data set, 13.2 square miles overlap parts of the 2012 baseline, and 3.8 square 
miles overlap the 2014 monitor. 
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Figure 13. 2015 monitor and baseline extension survey receiver stations employed the DTCC 
(Dynamic Technology Canada Corporation) DT-Solo 3-component 10-Hz geophone, a Sercel 

UNITE data logger, and battery. 
 
 
 Arcis Seismic Solutions processed the 2015 monitor and baseline extension survey data and 
reprocessed the 2012 baseline survey data and the 2014 monitor survey data. The processing 
sequence is summarized below, with details given in Appendix C: 
 

• Minimum phase conversion 
• Geometry assignment, trace edits, and 60-Hz noise removal 
• Spherical divergence correction 
• Surface consistent scaling, groundroll removal, and deconvolution 
• Refraction statics, surface consistent statics 
• Applying NMO 

- Noise suppression across domains (shot, offset, CMP [common midpoint]) 
- Surface consistent deconvolution 
- Noise suppression (offset and CMP) 
- Phase and statics compensation 
- Radon multiple attenuation 
- F-XY noise attenuation 
- 5-D interpolation 

• Removing NMO 
• Anisotropic velocity analysis 
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• Anisotropic Kirchhoff PSTM 
• Front-end mute 
• Stack, filter and AGC (automatic gain control) scaling 

 
 
4-D SEISMIC DATA INTERPRETATION 
 

Phase Development and Time-Lapse Monitoring 
 
 Time-lapse 4-D seismic data analyses and interpretation are possible where the monitor 
surveys overlap the pre-CO2 injection 2012 baseline data and where CO2 injection has occurred. 
The 2014 monitor survey overlaps Phase 1 and part of Phase 2 where injection had been 
progressing. The 2015 monitor and baseline extension included parts of Phases 1, 2, and 3, which 
had been undergoing CO2 injection at the time (Figure 14). Analysis of incremental injection is 
possible in areas undergoing injection between monitor surveys. 
 
 

 
 

Figure 14. Overlapping areas between the 3-D seismic surveys that were used for time-lapse 
analysis. The 2014 monitor (blue shading) overlaps the 2012 baseline. The 2015 monitor and 

baseline extension (black dashed line) overlaps 13.2 square miles of the 2012 baseline. The two 
monitors also overlap for 3.8 square miles (red outline). 
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 Development Phases 1 and 2 were pressurized sequentially, with CO2 injection beginning in 
Phase 1 in May 2013 and in Phase 2 in December 2013. When the 2014 monitor survey was 
acquired, there had been 17 months of CO2 injection in Phase 1 and 11 months of CO2 injection in 
Phase 2. A total of 1.21 million tonnes of CO2 had been incidentally stored at that time. The 2015 
monitor and baseline extension survey covered parts of Phases 1, 2, 3, 4, and 5 where a total of 
1.46 million tonnes of CO2 had been incidentally stored. Table 2 summarizes CO2 injection start 
dates and the calculated amount of CO2 stored in the different phases of the reservoir at the time 
of each monitor survey acquisition date (Montana Board of Oil and Gas, 2017).  
 
 

Table 2. CO2 Stored in the Muddy Formation within the Extent of the Seismic  
Surveys (Montana Board of Oil and Gas Conservation, 2017) at the Time of 
Monitor Seismic Data Acquisition  

Seismic Data 
Acquired Phase  

Start of CO2 
Injection 

Calculated 
Stored CO2, 

Mt 
Total CO2 

Stored 
Oct 2014 1 May 2013 1.04 1.21 

2 Dec 2013 0.17 
Sep 2015 1 May 2013 0.42 1.46 

2 Dec 2013 0.52 
3 Nov 2014 0.48 
4 Sep 2014 0.01 
5 Jan 2015 0.03 

 
 

Dynamic Simulation Modeling of Phases 1 and 2 
 
 Dynamic simulation modeling prior to CO2 injection into Phase 1 took into account the 
north–south trending permeability barrier between Phases 1 and 2 interpreted by Burnison and 
others, 2014 (Salako and others, 2017). However, several wells along the permeability barrier were 
unable to be adequately history-matched to production data. These wells were identified as 
diagnostic wells, indicating that the static and/or dynamic models did not adequately represent the 
true subsurface geologic conditions. Bottomhole pressure data combined with trial and error 
dynamic modeling using pseudo production wells provided an indication that fluid and pressure 
communication across the permeability barrier was occurring in proximity to the diagnostic wells. 
 
 Two wells near the fluid and pressure communication pathway were used as water injectors 
to maintain a fluid and pressure curtain to contain the CO2 within Phase 1 until Phase 2 was 
pressurized. Subsequent volumetric analyses, water cut measurements, and the rate of pressure 
buildup in Phase 2 provided further evidence of fluid and pressure communication across the 
permeability barrier. Figure 15 shows the zone of suspected fluid and pressure communication 
across the boundary between Phases 1 and 2. The 4-D seismic interpretation, as described in a later 
section, helped to define the location and geometry of the permeability barrier and illuminate the 
communication pathway, which was not discernible on the baseline 3-D data. 
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Figure 15. Injector–producer pairs showing zone of anomalous communication in the simulation 
model (modified from Burnison and others, 2016). 

 
 

4-D Data Conditioning 
 
 Time-lapse analysis involves interpretation of difference displays created by subtracting the 
monitor data volume from the pre-CO2 injection baseline data volume. These volumes are created 
in two steps. In the first step, both volumes are processed using similar workflows to honor the 
original amplitudes of the seismic data and to minimize the potential differences between the two 
data sets caused by differences in acquisition parameters, near-surface conditions, and noise. In 
the second step, the processed volumes are calibrated to enhance the differences only in the 
injection zone. Conditioning is accomplished with a calibration workflow designed to minimize 
the differences where they are not expected to occur, such as above or below an injection zone.  
 
 After Sensor Geophysical processed the 2012 baseline and 2014 monitor data, initial time-
lapse analysis was performed. For these data, the calibration process involved cross-equalization 
operations that included phase and time-shift estimations between the baseline and monitor, 
application of the estimated phase and time-shifts, shaping filtering, and shallow static correction. 
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Shaping filters were computed and applied trace by trace, but other operations were applied to the 
data set globally. Two repeatability measurements, time-shift maps, and normalized root mean 
square (NRMS) maps of the baseline and the monitor data sets, before and after cross-equalization, 
were generated over windows above and below the reservoir. Above the reservoir, a window of 
500 ms was used starting 200 ms above the Niobrara horizon. Below the reservoir, a window of 
200 ms was examined between 1400 and 1600 ms. These windows included both high and low 
reflectivity events to avoid NRMS bias toward low or high values. The maps show improvement 
in the data after the cross-equalization processes. Time-shifts have been significantly reduced to 
values close to or less than a millisecond (Figure 16), and the value of NRMS amplitude 
differences have been reduced to a range of 0% to 40%, with a modal value of 25% (Figure 17). 
Typical values of NRMS reported in the literature indicative of good repeatability are between 
10% and 30% (Johnston, 2013). 
 
 After data acquisition, the 2015 monitor and baseline extension data were processed by a 
different contractor, Arcis, who also reprocessed for 4-D analysis the original 2012 baseline and 
2014 monitor surveys. Time-lapse processing and cross-equalization workflows were applied by 
Arcis, including the computation of difference volumes from the several overlapping permutations 
of the three data sets. The quality of the cross-equalization done by Arcis is demonstrated in  
Figure 18 by a difference display of the reprocessed 2012 baseline and the reprocessed 2014 
monitor. Major amplitude differences between the two data sets are observed at the reservoir, 
where changes due to CO2 injection and accumulation are expected. Only minor amplitude 
differences above the Springen Ranch and below the Skull Creek are observed. This is an 
indication of good-quality 4-D seismic data that have been processed and cross-equalized. 
 
 For some analyses, a phase rotation was applied to the data. Burnison and others (2014) 
recognized that the reservoir reflection manifests as a thin-bed seismic response, characterized by 
an entering reflection followed immediately by an exiting reflection of opposite polarity. This 
results in the situation where the reservoir sand is located at the middle zero-crossing of the 
reflection. Applying a 90-degree phase shift to the data rotates the reflection so that a positive peak 
is centered on the reservoir sand, with its amplitude related to the reservoir character or content. 
The bounding horizons of Springen Ranch and Skull Creek then fall on either side of the reflection 
peak. Understanding the impact of CO2 on the reservoir reflection becomes much more intuitive.  
 
 CO2 in the reservoir at a sufficient saturation level significantly reduces the amplitude of the 
reflection, resulting in an anomaly on the difference section (Figure 19). To illustrate this effect 
quantitatively, it can be observed at a chosen point within the reservoir (Figure 19, the green dot) 
that the baseline seismic data (left panel) has a positive 0.667 amplitude value, while the cross-
equalized monitor data (middle panel) has a positive 0.335 amplitude value. The difference panel 
on the right (monitor minus baseline) amplitude value is negative 0.332. The injection of CO2 has 
a softening effect by reducing the seismic amplitude. This is an important observation for 
subsequent interpretation of the time-lapse data sets. 
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Figure 16. Time shift estimation between the 2012 baseline and the 2014 monitor: a) 500-ms 
window above the reservoir before (i) and after (ii) cross-equalization; b) 200-ms window below 

the reservoir. After cross-equalization, time shifts cluster near zero. 
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Figure 17. NRMS amplitude computation, 2012 baseline and the 2014 monitor data: a) over a  
500-ms window above the reservoir before (i) and after (ii) cross-equalization and b) over a  

200-ms window below the reservoir. 
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Figure 18. Difference display between the reprocessed 2014 monitor and the 2012 baseline. 
Highest amplitude differences are in the reservoir as expected (Burnison and others, 2016). 

 
 

 
 

Figure 19. Left panel: 2012 baseline, middle: cross-equalized 2014 monitor data,  
right: difference display (monitor minus baseline). GR and P-wave velocity logs from 05-06 OW 

are overlaid. The amplitude color is normalized on a scale of −1 to +1. 
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4-D Interpretation 
 
 4-D interpretation focused on the Arcis processed data sets. Several seismic mapping 
methods using different amplitude transforms and averaging techniques were examined to generate 
maps of 2-D slices of the reservoir enclosed within the two-way-travel-time window between 
horizons Springen Ranch and Skull Creek. Calculating the RMS amplitudes using the raw 
amplitudes produced the best images. Mapping was done for the 2012 baseline, the 2014 monitor, 
and 2015 monitor and baseline extension data sets. The baseline maps were subtracted from the 
respective monitor maps to generate the 4-D amplitude difference maps for the 2014–2012 and 
2015–2012 time-lapse periods. These 4-D amplitude difference maps were qualitatively 
interpreted to assess the changes in the reservoir due to CO2 saturation changes and pressure 
changes. The amplitude distributions of these maps illuminate changes in the reservoir and reveal 
the reservoir architecture and heterogeneities. Interpretations of the time-lapse amplitude maps 
revealed: a) permeability barriers and baffles (permeability barriers that are less impervious to 
flow); b) fluid and pressure communication pathways; c) CO2 migration, banking, and 
accumulation; and d) pressure buildup, and qualitative discrimination between saturation changes 
and pressure changes. 
 

2012–2014 4-D Interpretation 
 
 The seismic amplitude maps for the 2014 monitor and the resulting 4-D amplitude difference 
map between the pre- and post-CO2 injection data sets are shown in Figure 20, Figure 21, and 
Figure 22, respectively. These maps are jointly interpreted by examining the various features 
identified on the maps and by correlating these features with the well logs, seismic sections, and 
the well activities. The negative seismic amplitude changes on the difference map, red to yellow 
color, observed are diagnostic of the softening effects due to the reduction in the acoustic 
impedance (i.e., reduction in velocity and density), resulting from the combination of the effect of 
CO2 replacing oil and water in the pore spaces and the effect of pressure-up at the injector wells 
relative to the producer wells (Figure 22). The details of the interpretation are described below. 
 

Permeability Barriers 
 
• In the interpretation of the 3-D baseline survey and well logs, Burnison and others (2014) 

demonstrated that a high amplitude, meandering fluvial channel feature was shale-filled and 
acted as a permeability barrier. This feature is visible on the 4-D displays and consists of 
amplitude values near zero on the difference display. On the 2014 monitor, its character and 
dimensions along the boundary between Phase 3 (to the west) and Phases 5, 4, and 2 (to the 
east) are visible on the amplitude map from the monitor data. The feature is clear on the 4-D 
amplitude difference map between Phases 1 and 2, where CO2 injection had progressed  
(Figure 22). Its southern extent had not been discernible on the 2012 baseline data but is visible 
on the difference display. Knowing the geometry of the permeability barriers proved useful for 
updating the static and dynamic simulation models. 
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Figure 20. The RMS average amplitude map of the Bell Creek reservoir for the pre-CO2 injection 
2012 baseline (where it overlaps the 2014 monitor) generated between the Springen Ranch and 

Skull Creek horizons. 
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Figure 21. The RMS average amplitude map of the Bell Creek reservoir, for the 2014 monitor, 
generated between the Springen Ranch and Skull Creek horizons. 
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Figure 22. Annotated 4-D amplitude difference map of the Bell Creek reservoir, created by 
subtracting the 2012 baseline from the 2014 monitor. 

 
 
• A second permeability barrier that predates the fluvial feature and trends northwest to southeast 

was also identified during the baseline interpretation. It is seen on the amplitude map of the 
monitor data, and its character as a barrier to CO2 is visible on the 4-D display. This barrier 
prevents fluid communication between Phases 1 and 3 and between Phases 2 and 4. 

 
• A high-amplitude valleylike baffle is also observed within Phase 1, close to Wells 32-10, 32-

12, 32-13, 32-14, and 32-15. 
 
• Examination of the 4-D difference map shows that CO2 movement is restricted at the boundary 

of the permeability barrier and around the baffle identified in Phase 1. That there is no change 
in RMS amplitude observed within the permeability barriers and in the area around the baffle 
is indicative of a lack of CO2 and confirmation that the barriers and baffle are impermeable to 
CO2 flow. The CO2 acts like a tracer to illuminate these features. Well 32-07, located inside the 
baffle, and Wells 33-09 and 33-13A, inside the permeability barriers, were found to contain 
impermeable or tight lithology and were abandoned as dry holes. 
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A Bridge for Fluid and Pressure Communication 
 
• A permeable pathway traversing the permeability barrier and creating a bridge allowing fluid 

and pressure communication between Phases 1 and 2 is visible on the 4-D difference map and 
cross section (Figure 23). This feature was not visible on the baseline seismic data and was not 
incorporated into the geologic model resulting in history-matching difficulties of the injector–
producer pairs nearby. The location of the pathway correlates with interpretations of bottomhole 
pressure data, from which the existence of a communication channel had been inferred 
(Bosshart and others, 2015).  

 
• As part of field operations, Wells 04-05 and 05-09 were used to provide a pressure curtain by 

injecting water to keep CO2 within the Phase 1 area while Phase 2 was being pressurized. 
Although these wells fall within the Phase 1 geographic boundary, the 4-D difference display 
revealed that they were geologically within Phase 2, thereby contributing to an unexpectedly 
rapid pressurization of Phase 2. 

 
 

 
 

Figure 23. Cross-section line intersecting Wells 08-03 and 33-09 on the 4-D seismic amplitude 
map. P-wave velocity logs are displayed at well locations. 

 
 

CO2 Migration, Banking, and Accumulation 
 
• The 4-D seismic difference map indicates migration of injected CO2.  
 
• CO2 exists as a supercritical fluid at reservoir conditions (see Table B-1 and Figure B-3 in 

Appendix B) and appears to be migrating updip in the south–east direction because of 
buoyancy.  

 
• The CO2 appears to be banking and accumulating updip against the permeability barrier, which 

prevents further CO2 migration.  
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• Apart from the areas interpreted as permeability barriers and baffles, with zero 4-D amplitude 
difference, the connectivity of the CO2 plumes provides a qualitative indication of efficient 
sweep. Other areas with zero 4-D amplitude difference are places where CO2 migration is yet 
to reach. 

 
Discrimination of Pressure and Saturation Effects 

 
• Phase 2 has a higher or equal amplitude signal compared to Phase 1, despite 0.87 Mt more CO2 

having been injected into Phase 1 (Table 2). This could potentially be due to increased pressure 
caused by two temporary water curtain injection wells (04-05 and 05-09) actively injecting 
during the time period between the acquisition of the baseline and monitor surveys. These wells 
located to the east of the permeability barrier were initially thought to be in Phase 1 but are 
geologically in Phase 2 (Burnison and others, 2016). 

 
• An example of the effect of pressure buildup only is observed in neighboring Phase 8, at the 

southern border of Phase 1, where water was injected to create a water and pressure curtain to 
the south (Figure 23). 

 
2015–2012 4-D Interpretation 

 
• The interpretation of 4-D seismic amplitude difference for the 2015 monitor and extended 

baseline resulted in similar discoveries. Again, CO2 acted as a tracer fluid and helped to 
illuminate features in more detail. The amplitude maps for the 2012 baseline and 2015 monitor 
and their 4-D amplitude difference map follow (Figures 24, 25, and 26).  
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Figure 24. 2012 baseline RMS average amplitude map of the reservoir. A cross-section line is 
indicated. 
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Figure 25. 2015 monitor amplitude map of the reservoir. 
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Figure 26. Annotated 4-D difference map from the 2015 monitor. 
 
 

Permeability Barriers 
 
• There is an improved definition of permeability barriers. The meandering nature of the shale-

filled fluvial channel is better revealed in the 2015 monitor time-lapse maps than in the 
2014 monitor time-lapse maps because of the larger volume of CO2 injected. Both the high-
amplitude permeability barrier and a lower-amplitude impermeable lithology are shown along 
the inline cross section (Figure 27). 

 
A Pathway for Fluid and Pressure Communication Between Phases 1 and 3 

 
• Similar to the fluid and pressure communication pathway between Phases 1 and 2 seen on the 

2014 monitor amplitude maps, a pathway can be seen between Phases 1 and 3 and between two 
compartments within Phase 1. 
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Figure 27. Annotated cross-section line in Figures 23, 24, and 25, respectively: a) baseline,  
b) 2015 monitor, and c) 4-D difference (b minus a). A 90-degree phase shift has been applied to 

center the reservoir reflector. 
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CO2 Migration, Banking, Accumulation, and Breakthrough 
 
• The 4-D seismic difference map images the injected CO2 as it migrates away from the injection 

wells, e.g., Wells 21-01, 21-07, 21-11, 21-13, and Well 21-15 at the northern part of Phase 3.  
 
• Similar to the 2014–2012 4-D interpretation, CO2 appears to be banking and accumulating 

against the permeability barrier, which prevents further CO2 migration.  
 
• There are CO2 breakthroughs in some of production wells, e.g., Well 33-06 at the intersection 

of the permeability barrier and Well 29-16 at the upper western end of the fanlike channel at 
Inline 383. 

 
2015–2014 4-D Interpretation 

 
• The 2014 monitor and 2015 monitor surveys intersect for 3.8 square miles in the center of the 

field where the permeability barriers cross (Figures 28 and 29). The permeability barriers are 
visible, as is the impact of additional CO2 in Phase 3. The communication pathways are visible 
on the 2015 monitor but are much more ambiguous on the difference display, which is impacted 
only by the incremental CO2 injected in the 11 months since acquisition of the 2014 monitor 
survey. The wells within this overlapping extent had a total of 0.52 million tonnes of incidental 
CO2 storage during the time between the two surveys. 
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Figure 28. The RMS average seismic amplitude map of the Bell Creek reservoir, for 2014 overlap 
with 2015 monitor (top panel) and 2015 overlap with 2014 (bottom panel), generated between the 

Springen Ranch and Skull Creek horizons. 
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Figure 29. The 4-D difference map for the intersecting region between 2015 monitor and 2014–

2015 overlap monitor. 
 
 
DISCUSSION AND CONCLUSIONS 
 
 The expanded seismic campaign at Bell Creek consisting of acquisition, processing, and 
interpretation of multiple time-lapse seismic data sets (2-D surface seismic data, 3-D surface 
seismic data, VSP data, and passive seismic data) has been instrumental in gaining a better 
understanding of incidental CO2 storage associated with CO2 EOR. It has provided a means to 
measure and image physical properties throughout the geologic section on a fine grid over the field 
that has aided geologic characterization. Inversion of 3-D data was used to calculate volumes of 
geomechanical properties that were used in the construction of a 3-D mechanical earth model so 
that geomechanical responses due to injection operations can be modeled in the reservoir and 
surrounding strata (Ge and others, 2015). 4-D analysis improved the understanding of the reservoir 
heterogeneity and improved the geologic model that was generated using interpretation results 
from the 2012 baseline data previously reported on by Burnison and others (2014). CO2 acted as a 
tracer and helped illuminate geobodies in the 4-D data by delineating permeability barrier 
boundaries that were not resolved with 3-D baseline data. This illumination gave better insight 
about the location, extent, and effectiveness of these permeability barriers.  
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 The expanded seismic campaign also provided a means of directly indicating the locations 
of CO2 accumulation via the time-lapse surveys. The tracerlike effect of the CO2 helped to 
delineate relatively small permeable pathways transecting the permeability barriers, which allow 
limited fluid migration and pressure communication between the developmental phases. 
Understanding and incorporating these features and their geometrical dimensions into the static 
model significantly improved the dynamic simulation of the well activities and improved reservoir 
history matching and performance forecasting. 4-D analysis also indicated updip migration of CO2 
in the south–east direction and apparent accumulation of CO2 against the permeability barrier, 
which may be preventing further CO2 movement. This has given insight into the reservoir response 
to various stages of phase development, including water and CO2 injection. 
  
 The results of the expanded seismic campaign have contributed to the PCOR Partnership’s 
development of practices and technologies that will allow future commercial-scale CO2 storage 
projects to make informed decisions regarding site selection, injection programs, operations, and 
monitoring strategies that improve storage efficiency and effective storage capacity in clastic 
geologic formations. Related discussion of these practices and technologies has been reported in 
recent best practices manuals, including in “Best Practices Manual (BPM) for Site 
Characterization” and “Best Practices for Modeling and Simulation of CO2 Storage” and will be 
reported in an upcoming best practices manual “Monitoring for CO2 Storage and CO2 EOR.” 
Analysis of the expanded seismic campaign will continue with in-house processing and 
interpretation of pre- and post-CO2 injection passive data to better understand changes in reservoir 
conditions associated with phase development. Future work includes refined interpretation and 
time-lapse analysis of the VSP data. Additionally, pre- and poststack inversion of 3-D surface 
seismic data will be performed to gain more information about reservoir compartmentalization to 
help further refine the geologic model for use in simulations. Future work will also entail 
quantitative 4-D seismic analysis and inversion to estimate the amount of CO2 stored in the 
reservoir and to quantitatively assess the relationship between seismic amplitude change and CO2 
saturation using 4-D difference images and pulse neutron log data. 
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BRIEF REVIEW OF SEISMIC DATA COLLECTED AT BELL CREEK 
 
 
2-D TIME-LAPSE SEISMIC 
 
 In December 2011, during seismic source testing in preparation for the 2012 baseline survey 
to follow, the Energy & Environmental Research Center (EERC) acquired a 2-mile-long 2-D test 
line on the western edge of Phase 1 (Figure A-1). Originally collected as an exercise to preview 
the data quality obtainable, the line later provided an important opportunity to test whether CO2 
would be visible on a time-lapse seismic survey in Bell Creek, which was unknown at the time. 
Fluid substitution modeling had suggested a small but detectable change would occur, but this was 
not convincing. The uncompleted March 2014 3-D vertical seismic profile (VSP) did not produce 
unambiguous time-lapse results on 2-D VSP displays. 
 
 

 
 

Figure A-1. Source and receiver locations for the 2-D seismic lines collected in 2011 and 2014. 
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 In mid-July 2014, after 14 months of ongoing injection in Phase 1, a repeat of the test line 
was quickly acquired by a crew that had been mobilized for a larger project in a nearby area 
(Table A-1). The processed data revealed the presence of CO2 with a significant detectable 
amplitude decrease of the reservoir reflection (Figure A-2). The presence of CO2 was also 
validated by dynamic simulations of the reservoir along the line traces that were produced by the 
EERC (Figure A-3). 
 
 
Table A-1. 2-D Testline and Repeat Acquisition Parameters 
 2011 2-D Test Line 2014 2-D Monitor Line 
Acquisition Contractor CGG Dawson 
Energy Source Two 16,500-lb IVI Mini Vibes Two 64,000-lb AHV-IV  
Source Interval 220 feet 220 feet 
Total Source Points 48 48 
Geophone GS 32Ct 10-Hz geophone  SM 24 10-Hz geophone  
Group Interval 110 feet 110 feet 
Geophone Pattern 3 phones per trace 5-ft inline 

spacing 
6 phones per trace 3-ft inline 

spacing 
Active Spread NA NA 
Active Stations 96 96 
Total Receiver Stations 96 96 
Sweep Parameters Proprietary Proprietary 
Record Length 4 seconds 4 seconds 
Sample Interval 2 milliseconds 2 milliseconds 

 
 

 
 
Figure A-2. Seismic difference display from the 2011 and 2014 2-D line data showing amplitude 

differences in the reservoir due to injected CO2. 
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Figure A-3. Cross section of the dynamic reservoir simulations done by the EERC for the 2011–
2014 time-lapse period. The red box indicates the simulation extent that corresponds to the seismic 

difference display shown in Figure A-2. 
 
 
04-03 OW BOREHOLE ARRAY INSTALLATION 
 
 A permanent borehole arrays was installed as part of the monitoring, verification, and 
accounting (MVA) plan with the intent of using it for microseismic monitoring and use in repeat 
VSP surveys. The array was installed in 04-03 OW by Apex HiPoint, a seismic services company 
owned by Sigma Cubed, in April of 2013. The array is a GeoRes DownHole System with 50 levels. 
Each level consists of a digitized 4C Sensor Module comprising one Deepender™ 5000-X 
Hydrophone and three orthogonal OMNI-2400 15-Hz geophones (Figure A-4). Additional array 
parameters can be found in Table A-2. 
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Figure A-4. Photo of the 4C Sensor Module. 
 
 

Table A-2. 04-03-0W Borehole Array Parameters 
Receiver Type Digitized 4C Sensor Module (1 Deepender™ 5000-X hydrophone and 3 

orthogonal OMNI-2400 15-Hz geophones) 
Total Sondes 50 
Total Interconnects 50 
Total String Length 2460 feet 
Sonde Spacing 49.2 feet 
First Level 60 feet 
Bottom Depth 2461 feet 
Coupling Method Attached to a cemented downhole pipe by bracket 

 
 
 Each 4C Sensor Module was attached to a 2-7/8-inch tubing by a cage and clamp  
(Figure A-5). This cage and clamp system was specifically designed to protect the sensor module 
as it descended into the borehole and to allow cable to run under the clamps (Figure A-6). Cable 
slack was secured to the tubing to prevent damage (Figure A-7). During installation, the array was 
actively recording data that was analyzed in real time on-site as a quality control method to identify 
and assess any equipment malfunction caused during installation. 
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Figure A-5. Photo of the rebar cage and clamp used to secure and protect the sensor modules. 
 
 
 

 
 

Figure A-6. Photo of a clamp showing the locking mechanism and the spacer, which provides 
room for cable to safely pass under the clamp without being damaged. 
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Figure A-7. Photo of secured array cables along the casing. 
 
 
04-03 OW BOREHOLE ARRAY DATA RECORDING SYSTEM 
 
 The 04-03 OW borehole array is connected to a surface data-recording system by a fiber 
optic cable (Figure A-8). The data-recording system is a GeoRes Imagine HC (high capacity) 
recording system housed in a recording shack (Figure A-8). This system comprises a GeoRes 
Topside on-site control, a power controller, a storage controller, and satellite Internet for remote 
operation (Figure A-9). The GeoRes Topside on-site control is a Windows operating system that 
contains the GeoRes Imagine operating software, which allows for data recording, display of real-
time data, system and sensor testing, power management, multipath data storage, networking, and 
plotting (Geospace Technologies, 2014). The power controller is used to power the system and 
can be used to remotely reboot the system using a modem if needed. An uninterruptible power 
supply (UPS) was also installed with the data-recording system to prevent sudden power outages. 
The storage controller is a Linux machine that uses multiple drives to store the continuous data. 
When the borehole array and data-recording system are successfully operating, continuous passive 
data are recorded by the GeoRes Topside and stored on the storage controller. The surface 
equipment also includes two power units that supply power to the downhole array. 
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Figure A-8. Photos of the 04-03 OW wellhead showing the fiber optic cable running from the 
borehole array to the surface (left) and 04-03 OW recording shack (right). The satellite Internet 

dish allowing remote operation is mounted on top of the shack. 
 
 

 
 

Figure A-9. Photo of the 04-03 OW Borehole Array GeoRes Imagine HC recording system. 
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PASSIVE DATA ACQUISITION AND PROCESSING 
 
 The borehole array was operated and maintained by Sigma Cubed, a geophysical service 
company, from May 22, 2013, to June 8, 2014. During this time, continuous data was collected 
using a 0.5 msec sample rate and was saved in 10 second segments as SEG-D files. Sigma Cubed 
used a software package installed on the storage controller called GeoPro to do near real time event 
detection. GeoPro scanned the continuous data for coherent events as data were saved to the 
storage controller. When a coherent event was identified, the field file ID for the file being scanned 
was logged. File records corresponding to coherent events were validated by hand at the processing 
center, and if considered legitimate, the events were located and the amplitude of the event at the 
receiver string noted. Coherent events were mapped (Figure A-10). Sigma Cubed mapped a total 
of 3648 events. Only 22 of these events occurred between 8:00 p.m. and 7:00 a.m., outside normal 
field working hours. As there was significant development activity with workover rigs in  
Phases 2 and 3 during this time period, this suggests that most of the identified events were due to 
human activity in the field. 
 
 

 
 
Figure A-10. EERC-generated map showing events mapped by Sigma Cubed. Event amplitude is 

signified by size of event symbol. (Amplitude does not directly correspond to magnitude. No 
magnitudes for the mapped events were computed by Sigma Cubed.) 
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 The EERC took over passive data acquisition and continuously recorded data using 1-msec 
sampling until instability led to the system being shut down for maintenance in May 2016. 
Maintenance was completed but the recording system remained unstable with frequent crashes 
making further remote acquisition problematic and intermittent. The EERC is currently processing 
a subset of this data in-house for location and magnitudes as part of their MVA efforts. 
 

3-D VSP Acquisition 
 
 A baseline and two monitor 3-D VSP data sets were collected at Bell Creek as part of the 
deep monitoring program. The purpose of the surveys was to assess time-lapse changes in the 
reservoir due to CO2 around monitor Wells 05-06 OW and 04-03 OW (Figure A-11). 
 
 

 
 

Figure A-11. Location map and notional coverage of the 2013 baseline VSP survey. The area of 
coverage at the Muddy Formation is within the two outlined circles (Burnison and others, 2014). 
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2013 Baseline VSP Survey 
 
 The baseline VSP survey was collected by Apex HiPoint during a 5-day span from May 15–
19, 2013. The receiver arrays were the 50-level permanent borehole array in 04-03 W and a 60-
level retrievable array deployed in 05-06-OW. 110 total receivers were used. The borehole array 
parameters can be found in Table A-2 and Table A-3. The energy source was two 64,000-lb AHV-
IV vibrators operating in unison. The total number of shot points was 961(Figure A-12). Data were 
recorded normally with a time break. The hydrophone data from the 04-03 OW borehole array 
were not recorded. 
 
 
Table A-3. 05-06-0W Borehole Array Parameters 
Receiver Type DS 150 3-C 15-Hz Geophone 
Total Sondes 60 
Total Interconnects 60 
Total String Length 2953 feet 
Sonde Spacing 49.2 feet 
Bottom Depth 3002 feet 
First Level 19.2 feet 
Coupling Method Magnets on the receiver casing and pressure buildup using gas 

 
 



 

A-11 

 
 

Figure A-12. Map showing source points for a 2013 baseline VSP survey acquired in the Bell 
Creek Field. 

 
 
MARCH 2014 MONITOR VSP SURVEY 
 
 A monitor survey was started by Apex HiPoint in March 2014. The acquisition equipment 
and parameters were the same as the 2013 baseline VSP. After 125 shots were collected, the survey 
team was placed into standby mode because of operator error and equipment malfunctioning that 
required review. After several days of standby, the survey was aborted for safety and budget 
considerations. Figure A-13 shows the shot points that were successfully acquired. 
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Figure A-13. Map showing source points for a March 2014 monitor VSP survey acquired in the 
Bell Creek Field. 

 
 
OCTOBER 2014 MONITOR VSP SURVEY 
 
 In October of 2014 during the 2014 3-D surface seismic monitor survey, Dawson 
Geophysical Company collected a monitor VSP survey. This VSP survey utilized the permanent 
borehole array in 04-03 OW and shot points collected as part of the 3-D surface survey that 
overlaid shot point locations from the baseline VSP. 442 shots were selected from the 3-D surface 
seismic survey shot lines, and an additional 238 shots were specifically collected for the VSP 
survey for a total of 680 shots (Figure A-14). The energy source was two 64,000-lb AHV-IV 
vibrators operating in unison. No repeat VSP data were collected for 05-06 OW. No time break 
was used for data collection. Active shot records were extracted from the continuous data recorded 
by the 04-03 OW array using GPS (global positioning system) time stamps. Hydrophone data were 
recorded. 
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Figure A-14. Map showing source points for October 2014 monitor VSP survey acquired in the 
Bell Creek Field. 

 
 
3-D VSP DATA PROCESSING 
 
 Apex HiPoint processed the 2013 baseline VSP survey data with the following summarized 
sequence (greater detail is provided in Appendix C): 
 

• Reformatting and geometry assignment 
• Geophone orientation analysis and rotation 
• First arrival picking 
• Time-variant rotation  
• Spherical divergence correction 
• Removal of downgoing energy 
• Upward continuation to pseudo-receivers at surface 
• Surface consistent scaling and deconvolution 
• 3-D gridding, CMP (common midpoint) sort, and stack 
• Surface consistent scaling and deconvolution, trace balancing 
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• Velocity analysis and residual statics 
• Kirchoff PSTM (prestack time migration) 
• NMO (normal moveout correction), mute, stack, and filter 
• Datum statics 

 
 In 2014, Apex HiPoint processed the shot points from the 2013 baseline and March 2014 
monitor VSP survey data that were repeated with the following summarized sequence (greater detail 
is provided in Appendix C): 
 

• Reformatting and geometry assignment 
• Geophone orientation analysis and rotation 
• First arrival picking  
• Time-variant rotation 
• Spherical divergence correction 
• Match filter 
• Source wavelet estimation and wavelet deconvolution 
• Removal of downgoing energy 
• Linear moveout correction (LMO) 
• Filter and shift to final datum 

 
 In 2015, Paulsson, Inc., processed the geophone data from the 04-03 OW permanent 
borehole array collected during the 2013 baseline survey and October 2014 monitor VSP survey 
with the following summarized sequence. Paulsson also included the hydrophone data from the 
October 2014 monitor VSP survey (greater detail is provided in Appendix C): 
 

• Geometry assignment, geometry QC, data subset selection, and trace editing 
• Geophone orientation analysis and rotation 
• First arrival picking 
• Datum statics 
• Source wavelet estimation and wavelet deconvolution 
• Velocity analysis 
• Update receiver locations using well deviation and first arrivals 
• Spherical divergence correction and surface consistent scaling 
• Removal of downgoing energy 
• Surface consistent scaling, and statics 
• Kirchhoff prestack depth migration (Kirchhoff PSDM) 
• Residual statics and refined velocity analysis 
• Spectral balancing 
• Anisotropic velocity analysis and anisotropic Kirchhoff PSDM 
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SEISMIC INVERSION OF GEOMECHANICAL PROPERTIES AND PHYSICS OF THE 
BELL CREEK FLUIDS – FEASIBILITY STUDY 

 
 
SEISMIC INVERSION OF GEOMECHANICAL PROPERTIES 
 
 Computation of Geomechanical Properties 
 
 As part of characterization for CO2 storage, geomechanical properties were computed by 
simultaneous prestack inversion of 3-D gathers. The data set used was the 2012 baseline that was 
reprocessed after the 2014 monitor survey. Three volumes were computed; bulk density, Poisson’s 
ratio (PR), and Young’s modulus from the surface to a depth of 8000 feet. The volumes of 
geomechanical properties were used in the construction of a 3-D mechanical earth model so that 
geomechanical responses due to injection operations could be modeled in the reservoir and 
surrounding strata (Ge and others, 2015). 
 
 Importance of Geomechanical Properties 
 
 3-D geomechanical modeling can help in understanding the stress and strain states of the 
reservoir and the surrounding rocks (above and below the reservoir) prior to CO2 injection. When 
incorporated with fluid flow simulation modeling, 3-D geomechanical modeling can help to assess 
possible impacts of the changes in the stress and strain conditions during and after CO2 injection. 
Among the inputs required to build a 3-D geomechanical model are 1) density, 2) Poisson’s ratio, 
and 3) Young’s modulus. These three inputs were obtained from inversion of the 3-D prestack 
seismic data. Density is a direct inversion output, and Poisson’s ratio and Young’s modulus are 
calculated from the inversion outputs (density, P-wave velocities, and S-wave velocities). 
 
 Poisson’s Ratio 
 
 PR (σ), unitless, is connected with the P-wave and S-wave velocities by the equation: 
 

 𝜎𝜎 = 𝛾𝛾2−2
2𝛾𝛾2−2

 [Eq. C-1] 

 
Where 
 
 𝛾𝛾 = 𝑉𝑉𝑝𝑝

𝑉𝑉𝑠𝑠
 [Eq. C-2] 

 
and Vp and Vs are P-wave and S-wave velocities (km/s), respectively. 
 
 An image of PR obtained is shown (Figure B-1). Typical values inside the reservoir, between 
the Springen Ranch and Skull Creek horizons, are approximately 0.38. 
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Figure B-1. Color image of PR in the vicinity of the reservoir. Logs from 05-06 OW are overlaid: 
GR (gamma ray, black), Sonic P-wave velocity (blue), and PR (red) as computed from the array 

sonic log. 
 
 

Young’s Modulus 
 
 To obtain Young’s modulus, shear and bulk moduli were calculated. 
 
 The shear modulus (μ) is the resistance to change in shape. It has units of gigapascals (GPa) 
and is given by: 
 
 𝜇𝜇 =  𝑉𝑉𝑠𝑠 ×  𝜌𝜌 [Eq. C-3] 

 
where ρ is the density (g/cm3) and Vs (km/s) is a direct output of prestack inversion. 
 
 The bulk modulus (K), in GPa, is the resistance to a change in volume and is given by: 
 
 𝐾𝐾 = �𝑉𝑉𝑝𝑝2 × 𝜌𝜌�  −  4µ

3
 [Eq. C-4] 
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 From these, the Young’s modulus (E), in GPa, is computed: 
 
 𝐸𝐸 = 3𝐾𝐾(1 − 2µ) [Eq. C-5] 

 
 Typical values of Young’s modulus within the reservoir are between 9 and 10 GPa  
(Figure B-2). 
 
 

 
 
Figure B-2. Color image of Young’s modulus in the vicinity of the reservoir. Logs from 05-06 OW 

are overlaid: GR (black), sonic P-wave velocity (blue), and Young’s modulus (red) as computed 
from the array sonic log. 

 
 
PHYSICS OF THE BELL CREEK FLUIDS – FEASIBILITY STUDY 
 
 Earlier feasibility studies performed by the field operator – Denbury, using amplitude versus 
offset (AVO) fluid substitution, have shown that CO2 injection can produce detectable changes in 
time-lapse seismic amplitude. The Energy & Environmental Research Center (EERC) carried out 
the fluid physics analysis to examine how seismic might respond to the water alternating gas 
(WAG) enhanced oil recovery mechanism at Bell Creek Field. Using empirical equations (Batzle 
and Wang, 1992; Han and Batzle, 2000), engineering data from the reservoir, and thermodynamic 
properties of CO2 (NIST, 2017) the seismic acoustic parameters (density, bulk modulus, P-wave 
[primary or compressional wave] velocity, and P-impedance) of the Bell Creek, reservoir fluids 



 

B-4 

(oil, water, and CO2) are calculated. This aided the interpretation of the 4-D seismic data for fluid 
discrimination as a result of CO2 injection. Table B-1 shows the summary of the reservoir fluid 
properties and conditions used in calculating acoustic parameters. 
 
 

Table B-1. Summary of Bell Creek Engineering Data Showing Reservoir Fluid Properties 
and Conditions Used in Calculating Acoustic Parameters (Jin and others, 2016) 

Properties Value 
Depth 4300–4500 ft 
Thickness 30–45 ft 
Average Porosity 25%–35% 
Reservoir Temperature 108.0°F 
Oil API Gravity at 108.0°F 35.6 
Solution Gas–Oil Ratio at 108.0°F 173.38 scf/stb 
Connate Water Saturation 0.25 
Salinty 5000 ppm (TDS*) 

Pressure, psia 

Average Initial 1200 
Average in 2012 1600 
Average in 2014 2500 
Injection Range 2700–2900 
Average Production 2300 

* Total dissolved solids. 
 
 
 The pressure and temperature conditions of the reservoir show that the CO2 exists at 
supercritical condition, which means CO2 can behave either as a gas or as a liquid (Figure B-3). 
 
 Density and bulk modulus are two fundamental seismic acoustic parameters. The calculated 
density (Figure B-4) indicates that the density of CO2 is slightly larger than the density of oil, for 
the injection pressure ranging between 2700 to 2900 psia and at average reservoir temperature of 
108°F. This indicates the point at which CO2 behaves as a supercritical liquid. Whereas at, and 
below, the average production pressure of 2300 psia, the density of CO2 is much less than the 
density of oil. This indicates the point at which CO2 behaves as a supercritical gas. In comparison 
with the density of brine, the density of CO2 is significantly less than the density of brine at 
reservoir conditions. It is about 0.25 g/cm3 less at production pressure and about 0.2 g/cm3 less at 
injection pressure. 
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Figure B-3. CO2 phase diagram showing that, at the reservoir pressure and temperature conditions 

shown in Table B-1 above, CO2 exists in a supercritical condition (BPS International, 2017). 
 
 

 
 

Figure B-4. Comparison of Bell Creek fluid densities. Calculations were made using empirical 
equations from Batzle and Wang (1992) and Han and Batzle (2000), CO2 properties from the 
National Institute of Standards and Technology (2017), and engineering data from Table B-1. 
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 In terms of the bulk modulus, Figure B-5 shows that the CO2 bulk modulus is about 70 to 
200 times less than the bulk modulus of oil and much less than the bulk modulus of brine at 
reservoir conditions. This shows that whether the CO2 exists as a liquid or as a gas at supercritical 
conditions, its compressibility is still much higher than those of oil and brine, thus having a much 
lower bulk modulus than those of oil and brine. In terms of homogeneous fluids mixing in the pore 
space and using Wood’s equation (Wood, 1955), CO2 which has the lowest bulk modulus (i.e., 
highest compressibility) will dominate the effective bulk modulus of the mixed fluid. 
 
 

 
 
Figure B-5. Comparison of Bell Creek fluid bulk moduli. Calculations were made using empirical 

equations from Batzle and Wang (1992) and Han and Batzle (2000), CO2 properties from the 
National Institute of Standards and Technology (2017), and engineering data from Table B-1. 

 
 

 
1
𝐾𝐾𝑓𝑓

= 𝑆𝑆𝐶𝐶𝐶𝐶2
𝐾𝐾𝐶𝐶𝐶𝐶2

+ 𝑆𝑆𝑜𝑜
𝐾𝐾𝑜𝑜

+ 𝑆𝑆𝑏𝑏
𝐾𝐾𝑏𝑏

 [Eq. C-6] (Wood, 1955) 

 
Where SCO2, So, Sb are CO2, oil, and brine saturations, respectively, and KCO2, Ko, Kb, and Kf are 
CO2, oil, brine, and combined mixed fluid bulk moduli, respectively. 
 
 While fluid density variation, especially between oil and CO2, may not be significant in this 
case, the fluid bulk modulus variation is significant. It has a large impact on the two derived 
acoustic parameters, P-wave velocity and P-impedance, which in conjunction with the rock 
acoustic parameters, give rise to the two-way travel times measured in seismic data. Figure B-6 
shows that there is a significant difference between the velocity of CO2 and the velocities of oil 
and brine. The velocity of CO2 is on the order of 8 to 10 times less than the velocity of oil and 
much less than the velocity of brine. 
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Figure B-6. Comparison of Bell Creek fluid P-wave velocities. Calculations were made using 
empirical equations from Batzle and Wang (1992) and Han and Batzle (2000), CO2 properties 

from the National Institute of Standards and Technology (2017), and engineering data from  
Table B-1. 

 
 
 Similarly, P-impedance of CO2 is approximately 8 to 10 times less than the impedance of oil 
and much less than the impedance of brine (Figure B-7). This study, focused mainly on the fluid 
effect on seismic response, shows that CO2 injection can produce significant change in  
P-wave velocity and impedance. The addition of reservoir rock properties has a scaling effect and 
requires more detailed modeling to generate the seismic response. Nevertheless, with an average 
porosity of 25% to 35%, the rock matrix of the Bell Creek reservoir is expected to be compressible 
enough such that the P-wave velocity would be sensitive to the change in pore-fluid 
compressibility. 
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Figure B-7. Comparison of Bell Creek fluid P-impedance. Calculations were made using empirical 
equations from Batzle and Wang (1992) and Han and Batzle (2000), CO2 properties from National 

Institute of Standards and Technology (2017), and engineering data from Table B-1. 
 
 
 The change in pressure, as a result of injection, also impacts the rock framework and can 
result in change in moduli and in the P-wave and S-wave velocities. Since S-wave (shear waves) 
do not travel through fluid, they might be used in combination with P-wave to separate the effect 
of fluid saturation from the effect of pressure which has more impact on the rock framework than 
the fluid. To do this, inversion of P-wave and S-wave velocities and impedances from the prestack 
4-D seismic data was done.  
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SURFACE SEISMIC DATA PROCESSING 
 
 
2014 SURFACE SEISMIC DATA PROCESSING 
 
 The 3-D surface seismic data from the 2012 baseline survey and 2014 monitor survey were 
processed by Sensor Geophysical Ltd. in 2014. A summary of the processing can be found in the 
SEG-Y format data file headers. Processing statistics can be found in Table C-1. The processing 
sequence was as follows, with a brief explanation of each step: 
 

• Geometry assignment and trace editing 
- Assign x, y, and z values to each record trace associated with each shot to allow sorting 

by shot, receiver, offset, and common midpoint (CMP). Identify and edit defective 
traces. 

 
• Apply spherical divergence spreading correction 
- A time-variant, approximate correction for the geometrical decay of energy as the 

wavefront propagates away from the source. 
 

• +4 dB/sec gain 
- A time-variant, approximate correction for the geometrical decay of energy as the 

wavefront propagates away from the source. 
 

• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
 

• Singular value decomposition for groundroll removal 
- A filtering method that treats shot gathers as matrices and utilizes eigenvectors and 

eigenvalues to remove uncorrelated traces. 
 
 
Table C-1. Processing Statistics 
 2012 Baseline 2014 Monitor 
Prestack Traces 1,634,584 1,634,566 
Stacked Traces 48,313 48,343 
Record Length 3.0 sec 3.0 sec 
Sample Interval 2 msec 2 msec 
Inline Fold 24 24 
Bin Size 82.5 ft × 82.5 ft 82.5 ft × 82.5 ft 
No. of Inlines 288 288 
No. of Crossline 193 193 
Seismic Datum 4500 ft ASL* 4500 ft ASL 
Datum Velocity 7000 ft/s 7000 ft/s 
* Amplitude source location. 
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• Surface consistent deconvolution: 100-ms spiking operator with 1% white noise 
- A deconvolution operator to flatten the spectrum of the data. White noise prevents zero 

division. Incorporates source, receiver, offset, and CMP factors. 
 

• Vibroseis deconvolution compensation 
- Phase correction to transform the correlated and decomposed wavelet to minimum 

phase (Poletto and Miranda, 2004) 
 

• Delay time refraction statics: one layer, datum elevation 4500 ft; correction velocity 
7000 ft/s 
- A model of the near-surface layer is computed using first break times from the traces, 

allowing the data to be corrected for elevation differences and time-shifted to the 
seismic reference datum. 

 
• Surface consistent statics 
- After correcting trace gathers for normal moveout using the new velocities, small static 

shifts that increase event coherence among trace gathers are computed incorporating 
source and receiver components. 

 
• Time alignment statics 
- Another form of residual static correction. Algorithm used is not disclosed in the 

header. 
 

• Normal moveout correction 
- A time correction applied to flatten reflections in CMP gathers. The time correction is 

calculated using the velocity functions determined during velocity analysis. 
 

• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
 

• T-F adaptive noise suppression 
- A filtering method that models noise in the time and frequency (T-F) domain over 

sliding windows and uses the noise model to predict and subtract noise. 
 

• Fold match 
- A process performed to select a subset of data from the monitor and baseline surveys 

that have similar fold in each bin in order to accurately compare the two data sets for 
time-lapse changes due to changes in the reservoir and not acquisition. 

 
• F-XY filtering 
- A filter used to remove random noise using frequency-shot-receiver (f-x-y) domain. 

Specific details about the algorithms were not provided in the header. There are several 
algorithms that can be described as F-XY noise attenuation filters. 
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• Anisotropic diffusion filtering 
- A filtering method used to remove random noise and enhance coherent horizontal 

events without removing coherent energy from dipping structure that is not corrected 
to horizontal events using NMO (normal moveout correction). 

 
• Remove NMO 
- The time corrections applied during NMO are subtracted. 

 
• Kirchhoff prestack time migration 
- The processed gathers, with the migration velocities applied, are migrated using a 

Kirchhoff algorithm. This imaging process repositions amplitudes from their apparent 
reflected location to their actual geometric location in space. 

 
• Shifted to final datum 
- CDP (common depth point) gathers are shifted to the final datum. Processed data were 

output to data files in SEG-Y format for transfer to the client. 
 
 The 2014 monitor survey data were acquired with reference to the NAD (North American 
Datum) 1927 State Plane Montana South FIPS 2503. Both data sets were processed with reference 
to the NAD 1927 State Plane Montana South FIPS 2503, units in U.S. feet. Corner points of the 
3-D surface are denoted as follows: 
 
 

Inline Crossline X-Coordinate Y-Coordinate 
1001 1001 3101457.0 417537.8 
1001 1410 3126826.0 395289.9 
1558 1001 3131755.5 452086.8 

 
 
2015 SURFACE SEISMIC DATA PROCESSING 
 
 The 3-D surface seismic data from the 2012 baseline survey, 2014 monitor survey, and 2015 
monitor and extended baseline surveys were processed by Arcis Seismic Solutions in 2015. A 
summary of the processing can be found in the SEG-Y format data file headers. Processing 
statistics can be found in Table C-2. The processing sequence was as follows, with a brief 
explanation of each step: 
 

• Minimum phase conversion 
- A filter is used to transform the phase of the data to minimum phase. 

 
• Geometry assignment and trace editing 
- Assign x, y, and z values to each record trace associated with each shot to allow sorting 

by shot, receiver, offset, and CMP. Identify and edit defective traces. 
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Table C-2. Processing Statistics 

 2012 Baseline 2014 Monitor 
2015 Monitor and 
Baseline Extension 

Stacked Traces  163,639 49,614 105,459 
Record Length 3.5 sec 3.5 sec 3.5 sec 
Sample Interval  2 msec 2 msec 2 msec 
Inline Fold 24 24 24 
Bin Size 82.5 ft × 82.5 ft 82.5 ft × 82.5 ft 82.5 ft × 82.5 ft 
No. of Inlines 550 289 415 
No. of Crossline 380 189 378 
Seismic Datum 4500 ft ASL 4500 ft ASL 4500 ft ASL 
Datum Velocity 7000 ft/s 7000 ft/s 7000 ft/s 

 
 

• 60-Hz noise removal 
- Data are transformed into the frequency domain, and a filter is applied to remove  

60-Hz signal. 60-Hz noise is typically associated with power line noise. 
 

• Apply spherical divergence spreading correction 
- A time-variant, approximate correction for the geometrical decay of energy as the 

wavefront propagates away from the source. 
 

• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
 

• Groundroll attenuation 
- Algorithm used is not disclosed in the header. 

 
• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
 

• Surface consistent deconvolution: 100-ms spiking operator with 1% white noise 
- A deconvolution operator to flatten the spectrum of the data. White noise prevents zero 

division. Incorporates source, receiver, offset, and CMP factors. 
 

• Delay time refraction statics: one layer, datum elevation 4500 ft; correction velocity 
7000 ft/s 
- A model of the near-surface layer is computed using first break times from the traces, 

allowing the data to be corrected for elevation differences and time-shifted to the 
seismic reference datum. 

 
• Surface consistent statics 
- After correcting trace gathers for NMO using the new velocities, small static shifts 

that increase event coherence among trace gathers are computed incorporating source 
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and receiver components. Although not noted in the header, this process was likely 
preceded by velocity analysis. 

 
• Velocity analysis (second pass) 
- Gathers that have the surface consistent static correction applied are corrected for 

NMO with a range of constant velocities. The velocity at a given time resulting in the 
greatest coherence is saved. 

 
• Surface consistent residual statics (second pass) 

- As before, after application of refined velocities. 
 

• NMO 
- A time correction is applied to flatten reflections in CMP gathers. The time correction 

is calculated using the velocity functions determined during velocity analysis. 
 

• SCORE 
- A surface consistent amplitude correction used to account for amplitude effects caused 

by the near surface. 
• Noise suppression (shot and offset domain) 

- Algorithm used is not disclosed in the header. 
 

• Noise suppression (CMP domain) 
- Algorithm used is not disclosed in the header. 

 
• Surface consistent deconvolution: 100-ms spiking operator with 1% white noise 

- A deconvolution operator to flatten the spectrum of the data. White noise prevents zero 
division. Incorporates source, receiver, offset, and CMP factors. 

 
• Noise suppression (CMP and offset domain) 
- Algorithm used is not disclosed in the header. 

 
• Phase and statics compensation 
- Phase and static differences between the different vintages of data are corrected for 

using standard 4-D calibration routines 
 

• Radon multiple attenuation 
- NMO-corrected data are transformed into the ray parameter two-way intercept time 

domain. In this domain, the flattened primary reflections are mapped to different 
locations from the undercorrected multiples, and a filtering or muting operation is 
applied to remove the signal associated with the multiples. Then the inverse parabolic 
radon transform is performed. Another common approach is to remove the primary 
reflections in the ray parameter two-way intercept time domain, apply the inverse 
radon transform, and then subtract these data containing primarily the multiples from 
the input data. 
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• F-XY noise attenuation 
- A filter used to remove random noise using frequency-shot-receiver (f-x-y) domain. 

Traces within a window are transformed into the frequency domain, and a filter is 
designed to enhance signal that is spatially predictive for every frequency in a user-
specified range. 

 
• 5-D interpolation 
- Trace interpolation is done in the inline, crossline, offset, azimuth, and frequency 

domain to regularize the data. Some of its uses include correcting for missing shot or 
receiver points because of acquisition constraints. 

 
• Remove NMO 
- The time corrections applied during NMO are subtracted. 

 
• Anisotropic velocity analysis 
- A process that uses the NMO velocity functions determined in velocity analysis which 

are determined assuming reflected energy has a hyperbolic trajectory to solve for the 
more realistic nonhyperbolic trajectory defined by the anisotropic moveout equation. 

 
• Anisotropic Kirchhoff prestack time migration 
- The processed gathers, with the anisotropic migration velocities applied, are migrated 

using a Kirchhoff algorithm. This imaging process repositions amplitudes from their 
apparent reflected location to their actual geometric location in space. 

 
• Culling by SFIDST 
- Algorithm is not disclosed in the header. 

 
• Front-end mute 

- A mute applied to far offset traces to zero the parts of the trace where refracted energy 
overlaps reflected energy. 

 
• Stack 
- The traces in each migrated CMP gather are summed together to create a single CMP 

trace centered in each 82.5-ft × 82.5-ft surface bin. 
 

• Filter 
- Filter parameters are not disclosed in the header. 

 
• AGC (automatic gain control) 
- A trace-by-trace amplitude scaling process using a moving window. Parameters not 

disclosed. Processed data were output to data files in SEG-Y format for transfer to the 
client. 

 
 The 2015 monitor and baseline extension data were acquired in NAD 1927 State Plane 
Montana South FIPS 2503, units in U.S. feet. The 2012 baseline survey, 2014 monitor survey, and 
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2015 monitor and baseline extension data were delivered with coordinates into the NAD 83 UTM 
13N projections. Corner points of the 3-D surface are denoted: 
 
 

Inline Crossline X-Coordinate Y-Coordinate 
1001 1001 1579652.70 16371915.72 
1001 1410 1603733.59 16348279.58 
1697 1001 1619874.59 16412894.44 
1697 1410 1643955.48 16389258.30 

 
 
2013 VSP DATA PROCESSING 
 
 In October 2013, Apex HiPoint processed the 2013 baseline VSP data with the following 
summarized sequence. A summary of the processing can be found in the SEG-Y format data file 
headers. Additional processing information was delivered in PowerPoint format. The processing 
sequence was as follows, with a brief explanation of each step: 
 

• Reformat 
- Convert field data to internal format for processing. 

 
• Geometry assignment 
- Assign x, y, and z values to each record trace associated with each shot to allow sorting 

by shot, receiver, offset, and CMP. 
 

• Geophone orientation analysis 
- Analysis of hodograms (time versus distance of motion plots) for signal from the 

horizontal component geophones to determine the arrival direction of waves and 
determine each component’s orientation. 

 
• Rotation 
- Correction of phase changes resulting from rotation of tool during installation to signal 

consistent with radial and transverse geophone orientation. Another rotation of 
geophones was applied to maximize direct arrival energy on one component for first 
arrival picking (Apex HiPoint, 2013; Hinds and others, 1996) 

 
• First arrival picking 
- Times corresponding to the first arrival of energy on each channel are selected or 

picked. 
 

• Time-variant rotation 
- Rotation to maximize P-wave reflection energy on one single component (Apex 

HiPoint, 2013) 
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• Apply spherical divergence spreading correction 
- A time-variant, approximate correction for the geometrical decay of energy as the 

wavefront propagates away from the source. 
 

• Removal of downgoing energy 
- Attenuation of downgoing direct arrivals leaving upgoing reflections (Apex HiPoint, 

2013) 
 

• Upward continuation to pseudo-receivers at surface 
- Upward continuation of seismic data using a proprietary method to pseudo-receivers 

at surface allowing for standard surface seismic processing flows. 
 

• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
 

• Surface consistent deconvolution: 240-ms spiking operator with 1% white noise 
- A deconvolution operator to flatten the spectrum of the data. White noise prevents zero 

division. Incorporates source, receiver, offset, and CMPt factors. 
 

• 3-D gridding CMP sort and stack 
- A 3-D grid was applied to the data to make 82.5-ft by 82.5-ft bins and assign CMPs. 

 
• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
 

• Surface consistent deconvolution: 240-ms spiking operator with 1% white noise 
- A deconvolution operator to flatten the spectrum of the data. White noise prevents zero 

division. Incorporates source, receiver, offset, and CMP factors. 
 

• Trace balancing 
- A time-invariant trace amplitude correction. 

 
• Velocity analysis 
- Gathers are corrected for NMO with a range of constant velocities. The velocity at a 

given time resulting in the greatest coherence is saved. 
 

• Residual statics 
- After correcting trace gathers for normal moveout using the new velocities, small static 

shifts that increase event coherence among trace gathers are computed. 
 

• Kirchhoff prestack time migration 
- The processed gathers, with the migration velocities applied, are migrated using a 

Kirchhoff algorithm. This imaging process repositions amplitudes from their apparent 
reflected location to their actual geometric location in space. 
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• NMO correction 
- A time correction applied to flatten reflections in CMP gathers. The time correction is 

calculated using the velocity functions determined during velocity analysis. 
 

• Mute 
- Top and bottom mute was applied to the stack to remove areas with poor resolution 

due to survey geometry. 
 

• Stack 
- The traces in each migrated CMP gather are summed together to create a single CMP 

trace centered in each 82.5-ft × 82.5-ft surface bin. 
 

• Filter 
- An F-XY deconvolution was applied which is a filter used to remove random noise 

using frequency-shot-receiver (f-x-y) domain. Specific details about the algorithms 
were not provided in the header. Several algorithms can be described as F-XY noise 
attenuation filters. A 4-140-Hz bandpass filter was applied. 

 
• Shifted to final datum: one layer, datum elevation 3700 ft; correction velocity 6500 ft/s 

- Data are shifted to the final datum. Processed data were output to data files in SEG-Y 
format for transfer to the client. 

 
2014 VSP Data Processing 

 
 In April 2014, ApexHi Point processed the shot points from the 2013 baseline and March 
2014 monitor VSP data that were repeated with the following summarized sequence. A summary 
of the processing can be found in the SEG-Y format data file headers. The processing sequence 
was as follows, with a brief explanation of each step: 
 

• Reformat 
- Convert field data to internal format for processing. 

 
• Geometry assignment 
- Assign x, y, and z values to each record trace associated with each shot to allow sorting 

by shot, receiver, offset, and CMP. 
 

• Geophone orientation analysis 
- Analysis of hodograms (time versus distance of motion plots) for signal from the 

horizontal component geophones to determine the arrival direction of waves and 
determine each component’s orientation. 

 
• Rotation 
- Correction of phase changes resulting from rotation of tool during installation to signal 

consistent with radial and transverse geophone orientation. Another rotation of 
geophones was applied to maximize direct arrival energy on one component for first 
arrival picking (Apex HiPoint, 2013; Hinds and others, 1996). 
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• First arrival picking 
- Times corresponding to the first arrival of energy on each channel are selected or 

picked. 
 

• Time-variant rotation 
- Rotation to maximize P-wave reflection energy on one single component (Apex 

HiPoint, 2013). 
 

• Apply spherical divergence spreading correction 
- A time-variant, approximate correction for the geometrical decay of energy as the 

wavefront propagates away from the source. 
 

• Match filter 
- Filter designed and applied to match source signature of one vintage of data to another 

in order to equalize amplitudes and minimize phase differences (Hoeber and others, 
2005). 

 
• Source wavelet estimation and wavelet deconvolution 
- Source wavelet is estimated for each shot and used to design a deconvolution operator 

to flatten the spectrum of the data. 
 

• Removal of downgoing energy 
- Attenuation of downgoing direct arrivals leaving upgoing reflections (Apex HiPoint, 

2013). 
 

• Linear moveout correction (LMO) 
- Reflections were flattened using the first arrival time picks. 

 
• Filter 
- A 4-140-Hz bandpass filter was applied. 

 
• Shifted to final datum: one layer, datum elevation 3700 ft; correction velocity 6500 ft/s 

- Data are shifted to the final datum. Processed data were output to data files in SEG-Y 
format for transfer to the client. 

 
2015 VSP Data Processing 

 
 In May 2015, Paulsson, Inc., processed the geophone data from the 04-03 OW permanent 
borehole array collected during the 2013 baseline and October 2014 monitor VSP surveys with the 
following summarized sequence. A summary of the processing cannot be found in the SEG-Y 
format data file headers. The following information is a processing flow proposed prior to actual 
data processing and may not reflect the processing flow used. 
 

• Geometry assignment and trace editing 
- Assign x, y, and z values to each record trace associated with each shot to allow sorting 

by shot, receiver, offset, and CMP. Identify and edit defective traces. 
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• Data subset selection 
- Shot records from shot points that were repeated from the 2013 baseline VSP to the 

October 2014 monitor VSP survey were compiled into a subset of data used for 
processing. 

 
• Geophone orientation analysis 
- Analysis of hodograms (time versus distance of motion plots) for signal from the 

horizontal component geophones to determine the arrival direction of waves and 
determine each component’s orientation. 

 
• First arrival picking 
- Times corresponding to the first arrival of energy on each channel are selected or 

picked. 
 

• Datum statics: datum elevation 3730 ft; correction velocity not disclosed 
- Data are shifted to an elevation datum. 

 
• Source wavelet estimation and wavelet deconvolution 
- Source wavelet is estimated for each shot and used to design a deconvolution operator 

to flatten the spectrum of the data. 
 

• Velocity analysis 
- Evaluate velocity model generated from zero offset VSP velocities by performing 

moveout analysis on prestack gathers. 
 

• Update receiver locations using well deviation and first arrivals 
- X, Y, and Z coordinates were updated to account for well deviation. 

 
• Apply spherical divergence spreading correction 
- A time-variant, approximate correction for the geometrical decay of energy as the 

wavefront propagates away from the source. 
 

• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
 

• Removal of downgoing energy 
- Attenuation of downgoing direct arrivals leaving upgoing reflections (Apex HiPoint, 

2013). 
 

• Surface consistent scaling 
- A time-invariant trace amplitude correction incorporating source, receiver, offset, and 

CMP factors. 
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• Surface consistent statics 
- After correcting trace gathers for NMO using the new velocities, small static shifts 

that increase event coherence among trace gathers are computed incorporating source 
and receiver components. 

 
• Kirchhoff prestack depth migration (Kirchhoff PSDM) 

- The processed gathers, with the migration velocities applied, are migrated using a 
Kirchhoff algorithm. This imaging process repositions amplitudes from their apparent 
reflected location to their actual geometric location in space. 

 
• Residual statics 
- After correcting trace gathers for NMO using the new velocities, small static shifts 

that increase event coherence among trace gathers are computed. 
 

• Refined velocity analysis 
- Evaluate velocity model generated from zero offset VSP velocities by performing 

moveout analysis on prestack gathers. 
 

• Spectral balancing 
- The frequency spectra are shaped in order to balance the amplitudes of the frequencies 

in the desired bandwidth and improve data resolution. 
 

• Anisotropic velocity analysis 
- Algorithm not disclosed. 

 
• Anisotropic Kirchhoff PSDM 
- The processed gathers, with the anisotropic migration velocities applied, are migrated 

using a Kirchhoff algorithm. This imaging process repositions amplitudes from their 
apparent reflected location to their actual geometric location in space. 

 
 
REFERENCES 
 
Apex HiPoint, 2013, Denbury/EERC Belle Creek 3-D VSPs—final imaging update: Presented to 

Energy & Environmental Research Center. 

Hinds, R.C., Anderson, N.L., and Kuzmiski, R.D., 1996, VSP interpretive processing—theory and 
practice: Society of Exploration Geophysicists. 

Hoeber, H., Lecerf, D., Zaghouani, H., and Whitcombe, D., 2005, Matching of multiple time-lapse 
data using multi-coherence analysis: Presented at 67th EAGE Conference & Exhibition. 

Poletto, F., and Miranda, F., 2004, Seismic while drilling, fundamentals of drill-bit seismic for 
exploration: SEG, Handbook of Geophysical Exploration, Seismic Exploration, Elsevier 35. 

 


	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	INTRODUCTION
	BACKGROUND
	SEISMIC DATA ACQUISITION AND PROCESSING
	3-D Surface Seismic Data Acquisition
	2012 Baseline Survey
	2014 Monitor Survey
	2015 Monitor and Baseline Extension Survey

	4-D SEISMIC DATA INTERPRETATION
	Phase Development and Time-Lapse Monitoring
	Dynamic Simulation Modeling of Phases 1 and 2
	4-D Data Conditioning
	4-D Interpretation
	2012–2014 4-D Interpretation
	Permeability Barriers
	A Bridge for Fluid and Pressure Communication
	CO2 Migration, Banking, and Accumulation
	Discrimination of Pressure and Saturation Effects

	2015–2012 4-D Interpretation
	Permeability Barriers
	A Pathway for Fluid and Pressure Communication Between Phases 1 and 3
	CO2 Migration, Banking, Accumulation, and Breakthrough
	2015–2014 4-D Interpretation


	DISCUSSION AND CONCLUSIONS
	REFERENCES
	APPENDIX A
	3-D VSP Acquisition
	2013 Baseline VSP Survey
	References

	APPENDIX B
	Young’s Modulus

	APPENDIX C
	2014 VSP Data Processing
	2015 VSP Data Processing


